【笔记】机器学习用到的“概率论与数理统计”知识简单回顾

本文回顾了机器学习中概率论与数理统计的基础知识,包括概率公式和常见分布。在机器学习实践中,通过分析样本标签和特征分布,利用协方差评估特征与标签的相关性,从而选择关键特征,降低计算复杂度。期望、方差和协方差等统计量在模型构建中扮演重要角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概率公式:
这里写图片描述

常见的概率分布:
这里写图片描述

这里写图片描述
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值