JZOJ2724. 【3.16XJ模拟题】圆

题目描述

二维坐标平面内有n个圆,第i个圆圆心在(Xi,Yi),半径为Ri,权值Vi。任何两个圆都不会相交(也不会相切),但是圆与圆之间可能存在包含关系。当我们在一个圆里面的时候,我们必须经过它的边界一次,才能走出这个圆。

对于不同的两个圆A、B,如果可以从A到B且经过不超过K次边界,则称A、B是连通的。现在的问题是:对于所有的连通的一对圆(A,B),权值差的绝对值最大有多少。即找到max{ |VA – VB|, 其中A B连通}。
若圆A包含圆B,那么圆A内的区域定义为,A挖去圆B的剩余部分。

对于20%的数据,n ≤ 1000
对于100%的数据,T ≤ 10, 2 ≤ n ≤ 50000, 2 ≤ K ≤ 100, 0 < Ri ≤ 200000000, -1000000000 ≤ Xi, Yi, Vi ≤ 1000000000,

分析

我们发现这些圆很微妙,他们不会相交,那么一个圆A包含另一个圆B,就可以看成圆A是B的祖先,而最小的包含B的就是它的父亲。那么整个图会转化成一棵树,而恰好,一个圆到另一个圆内,就是树中简单路径的长度,那么这样的话K这么小,设F[i][j]表示与i距离在j及以内的所有点的最小点权。那么转移先枚举j再枚举i及与其相连的点即可。答案就是max{v[i]-F[i][k]}了。
现在问题是如何转化?怎么找父亲?
暴力的话只有20分。
考虑扫描线,这个很关键。
考虑扫面线形如x=a。它跟一些圆肯定有交点嘛。那么这些交点代表了什么呢?
我们发现,假如一个圆B的两个交点都在另一个圆A的两个交点之内,那么肯定是包含关系。那么父亲肯定是所有圆A中两交点距离最小的一个。如图。
这里写图片描述
因为是对称的,我们只需要维护上交点或下交点即可。但是这个时候我们要分类讨论。
我们每一次扫到一个新的圆C,目标就是找到离他最近的上(下)交点X,然后这个时候有两种情况。
1,假如X的另一个交点Y与X在扫描线上形成的线段包含C与扫描线的切点,X所代表的圆D就是C父亲了。
2,假如不包含,那么他们形成并列关系。那么C的父亲就是D的父亲嘛。
怎么维护这些交点呢?
这里写图片描述
观察一下性质,假如移动了扫描线,交点的情况如何?
我们发现,实际上它们的相对顺序是不变的!(假如扫描线没有离开圆)
考虑使用平衡树维护交点点集。那么每次只需要树上二分查找新加入圆的切点的最近的交点是哪个,再判两种情况即可。离开了一个圆就直接删掉这个点。
这样NlogN解决了。

代码

定义struct和变量那一块打烂了。

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<set>
using namespace std;
typedef long long ll;
typedef double db;
#define fo(i,j,k) for(i=j;i<=k;i++)
#define fd(i,j,k) for(i=j;i>=k;i--)
const int N=50005,mx=1e9+7;
struct vec
{
    int x,y;
    vec (int x0=0,int y0=0) {x=x0,y=y0;}
}c[N*2];
struct circle
{
    vec p;
    int r,v;
}a[N];
vec operator -(vec a,vec b)
{
    return vec(a.x-b.x,a.y-b.y);
}
ll operator *(vec a,vec b)
{
    return (ll)a.x*b.x+(ll)a.y*b.y;
}
ll Len2(vec a)
{
    return a*a;
}
int T,n,k,ans,i,j,T1,p,t1,now;
int first[N],next[N*2],b[N*2],tt,fa[N],f[N][105];
db pd(int i)
{
    return (db)a[i].p.x-sqrt((db)a[i].r*a[i].r-(db)(a[i].p.x-now)*(a[i].p.x-now));
}
struct cmp
{
    bool operator()(const int &x,const int &y)
    {
        return pd(x)>pd(y);
    }
};
multiset<int,cmp> tr;
multiset<int,cmp>::iterator dur;
void clear()
{
    ans=0;
    tr.clear();
    fo(i,1,n+1) first[i]=0;
    t1=tt=0;
}
bool cmp(vec i,vec j) 
{
    return a[i.x].p.x+i.y*a[i.x].r<a[j.x].p.x+j.y*a[j.x].r;
}

bool Include(int x,int y)//y include x
{
    return (ll)a[y].r*a[y].r>Len2(a[x].p-a[y].p);
}
void getfa()
{
    fo(i,1,t1)
    {
        now=a[c[i].x].p.x+c[i].y*a[c[i].x].r;
        if (c[i].y==-1) 
        {
            dur=tr.upper_bound(c[i].x);
            if (dur==tr.end())
                fa[c[i].x]=1;
            else
            if (Include(c[i].x,*dur))
                fa[c[i].x]=*dur;
            else fa[c[i].x]=fa[*dur];
            tr.insert(c[i].x);
        }
        else tr.erase(tr.find(c[i].x));
    }
}
void solve() 
{
    fo(j,1,k)
        fo(i,1,n+1)
        {
            f[i][j]=f[i][j-1];
            for(p=first[i];p;p=next[p])
                f[i][j]=min(f[i][j],f[b[p]][j-1]);
        }
    fo(i,2,n+1)
        ans=max(ans,a[i].v-f[i][k]);
}
void cr(int x,int y)
{
    tt++;
    b[tt]=y;
    next[tt]=first[x];
    first[x]=tt;
}
int main()
{
    freopen("t3.in","r",stdin);
    scanf("%d",&T);
    while (T--)
    {
        T1++;
        clear();
        scanf("%d %d",&n,&k);
        a[1].v=mx;
        f[1][0]=mx;
        fo(i,2,n+1)
        {
            scanf("%d %d %d %d",&a[i].p.x,&a[i].p.y,&a[i].r,&a[i].v);
            c[++t1].x=i;
            c[t1].y=1;
            c[++t1].x=i;
            c[t1].y=-1;
            f[i][0]=a[i].v;
        }
        sort(c+1,c+1+t1,cmp);
        getfa();
        fo(i,2,n+1)
        {
            cr(fa[i],i);
            cr(i,fa[i]);
        }
        solve();
        printf("Case %d: %d\n",T1,ans);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值