从机器视觉检测角度讨论公路路面病害检测,核心在于通过图像采集、处理与分析技术实现病害的自动化识别与量化。
- 图像采集
传感器选择:常用高分辨率工业相机、多光谱相机或3D激光扫描仪。车载移动检测系统(如巡检车)结合GPS/IMU定位可实时获取路面图像。
光照条件:需解决自然光变化(阴影、逆光)问题,可通过主动光源(如LED阵列)或HDR成像技术补偿。
线阵相机:沿路面纵向连续扫描,搭配高速光源(如 LED 线阵光源),适用于高速检测(60-100km/h),可获取高分辨率(50-200μm/pixel)的路面纵向条带图像,是主流的裂缝检测设备。
面阵相机:拍摄路面横断面或局部区域,用于坑槽、拥包等不规则病害的细节识别,常与线阵相机配合实现全幅路面覆盖。
激光 / 结构光传感器:辅助获取三维轮廓信息,结合视觉图像计算路面深度(如坑槽深度、车辙高度),解决二维图像无法表征的立体病害(如车辙深度测量误差可控制在 ±1mm)。
载体平台:
车载系统:在检测车顶部或侧面安装相机阵列,集成 GNSS 定位模块,实现病害位置(经纬度)与图像的精准匹配(定位精度≤0.5m)。 - 图像预处理
去噪与增强:采用高斯滤波、直方图均衡化或小波变换消除噪声。
畸变校正:针对车载相机广角镜头的桶形畸变,通过标定(如张正友法)进行几何校正。
ROI提取:基于路面纹理特征(如灰度均匀性)分割感兴趣区域,排除非路面干扰。 - 病害检测算法
传统图像处理:
阈值分割:Otsu算法用于裂缝检测(裂缝像素灰度与路面差异明显)。
边缘检测:Canny算子结合形态学处理(如膨胀)连接断裂裂缝。
纹理分析:Gabor滤波器或LBP(局部二值模式)识别龟裂、网裂等复杂纹理病害。
深度学习:
目标检测:YOLOv8、Faster R-CNN等模型定位坑槽、修补等病害,需标注框数据。
语义分割:U-Net、DeepLabv3+对像素级分类,适用于裂缝、剥落等细长或不规则形状。
多任务学习:联合检测(病害类型)与分割(精确边界),提升效率。 - 3D视觉技术
激光轮廓扫描:通过点云数据计算坑槽深度、车辙横断面,弥补2D图像缺乏深度信息的缺陷。
立体视觉:双目相机重建路面3D模型,检测沉陷或拥包等竖向变形。
典型病害类型
1. 裂缝检测(最核心场景)
检测指标:裂缝长度(m)、宽度(mm)、密度(m/m²)、类型(横向 / 纵向 / 龟裂)。
2. 坑槽与块状破损检测
难点:坑槽边缘不规则、易与阴影、油污混淆,传统算法易误判。
3. 表面缺陷综合检测
车辙辅助检测:通过视觉图像提取车辙边缘线,结合三维点云数据计算车辙深度(RD),与激光车辙仪结果一致性达 98%。
抗滑性能关联:分析路面集料暴露程度(图像中集料颗粒面积占比),间接评估抗滑性能衰减(如集料磨损率 > 30% 时建议预防性养护)。
机器视觉检测凭借非接触、高效、自动化的优势,已成为公路路面病害检测的核心技术,尤其在裂缝、坑槽等表观病害识别中实现了从 “人工经验” 到 “数据驱动” 的跨越。未来需突破复杂环境适应性、实时性优化等瓶颈,通过与三维感知、AI 算法的深度融合,推动检测技术向 “精准化、智能化、无人化” 发展,为智慧公路养护提供更强的技术支撑。
51camera的公路路面病害检测系统是专门用于公路路面病害检测的机器视觉组件,该组件集相机、激光、防护、同步、控制为一体,可以在各种交通应用场景下提供长时间稳定可靠的视觉图像。