hdu 5776 抽屉定理 判断子序列%m是否为0

定一个数列,求是否存在连续子列和为m的倍数,存在输出YES,否则输出NO
输入描述
输入文件的第一行有一个正整数T(1\leq T \leq 101T10),表示数据组数。

接下去有T组数据,每组数据的第一行有两个正整数n,m (1\leq n\leq 1000001n100000 ,1\leq m\leq50001m5000).

第二行有n个正整数x (1\leq x\leq 1001x100)表示这个数列。
输出描述
输出T行,每行一个YES或NO。
输入样例
2
3 3
1 2 3
5 7
6 6 6 6 6
输出样例
YES

NO

题解:

预处理前缀和,一旦有两个数模m的值相同,说明中间一部分连续子列可以组成m的倍数。为什么?假设sum[1,i]%m=k,sum[1,j]%m=k,则sum[i+1,j]%m=0。

由鸽巢原理,可以知道一旦n>m,则必定会有某两个前缀和对m取模相等。

复杂度O(n).

抽屉定理:n+1个物品放进n个抽屉里,必定会有一个抽屉有两个物品。这道题相当于把n个物品放进m个抽屉里,如果n>m,那么一定会出现两个前缀和%m==k

那么就输出yes。所以n>m直接输出yes。

#include<bits/stdc++.h>
using namespace std;
int vis[50005];
int sum[100005];
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n,m;
        scanf("%d %d",&n,&m);
        memset(sum,0,sizeof(sum));
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=n;i++)
        {
            int x;
            scanf("%d",&x);
            sum[i]=sum[i-1]+x;
            vis[sum[i]%m]++;
        }
        if(vis[0]>=1||n>m)
            printf("YES\n");
        else
        {
            int flag=0;
            for(int i=1;i<=m;i++)
            {
                if(vis[i]>=2)
                {
                    flag=1;
                    break;
                }
            }
            if(flag)
                printf("YES\n");
            else
                printf("NO\n");
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值