基于YOLOv8深度学习的智慧农业果园果树柑橘类果实目标检测系统(PyQt5界面+数据集+训练代码)

近年来,随着人工智能和物联网技术的迅速发展,智慧农业已逐渐成为现代农业发展的核心方向之一。在这一领域,目标检测技术因其在精准农业中的广泛应用前景,尤其是在果园果树管理中的显著作用,而备受关注。果树的果实检测和识别是果园管理中的重要环节,直接关系到果实采摘的时机、产量评估以及病虫害的防控等。传统的果实检测主要依赖人工观察,这不仅耗时费力,还容易受到光照、天气以及作业人员经验的影响,导致检测效率低下且准确率有限。因此,结合深度学习技术开发一种高效、精准的果实目标检测系统,已成为智慧农业领域的研究热点。

本文设计并实现了一种基于YOLOv8深度学习的柑橘类果实目标检测系统。YOLOv8作为最新一代的目标检测模型,在轻量化设计、检测速度及精度方面具有显著优势,非常适用于实时检测任务。系统利用YOLOv8模型对柑橘果实进行快速、精准的检测与分类,可支持静态图片、视频流及实时摄像头输入,极大地提高了系统的适用性与灵活性。此外,系统还提供了置信度阈值与交并比(IoU)阈值调节功能,用户可以根据实际场景的需求动态调整检测参数,以达到更好的检测效果。

为提升模型在果园复杂场景中的性能,本文针对柑橘果树特定的应用场景,构建了一个涵盖多种环境条件的定制化柑橘果实数据集。数据集中包括不同光照、果实成熟度及背景复杂度的样本,确保了模型的鲁棒性与泛化能力。在数据集的基础上,通过迁移学习对YOLOv8模型进行微调,并进一步优化了训练参数(如学习率、批量大小、训练轮次等),显著提升了模型的检测精度和稳定性。实验表明,优化后的模型在柑橘果园场景中表现优异,能够精准识别果实并输出其类别、置信度和位置信息。

系统的开发基于PyQt5框架,设计了友好的图形化用户界面(GUI),为用户提供直观、易用的交互体验。用户通过界面可轻松加载图片、视频或实时摄像头画面进行检测,并实时查看检测结果的可视化展示。系统还支持检测结果的保存功能,包括保存带标注的图片和视频,以及生成详细的检测数据文件,方便用户对检测结果进行管理与后续分析。此外,系统对目标检测任务的执行效率进行了优化,使其能够在中高端计算设备(如NVIDIA RTX 3070 Ti)上实现接近实时的检测速度,满足果园实时监控的需求。

实验结果表明,该系统在实际果园场景中具有较高的检测精度和实时性,在检测柑橘果实分布、数量统计以及成熟度评估等方面均取得了良好的效果。系统不仅能够为果园管理者提供精准的数据支持,还可以辅助优化采摘决策、提高生产效率,有助于推动果园的精细化管理和智慧农业的发展。未来,系统还可通过扩展模型的类别检测能力,进一步应用于多种果树管理场景,为智慧农业的全面发展提供更加完善的技术解决方案。

算法流程

项目数据

通过搜集关于数据集为各种各样的柑橘相关图像,并使用Labelimg标注工具对每张图片进行标注,分1检测类别,分别是’柑橘’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值