通过使用AlexNet、GoogLeNet和VGGNet等预训练模型,并结合迁移学习技术,对CT影像进行特征提取和分类。系统在公开数据集上进行了训练和测试,结果表明,该方法能够有效区分COVID-19和非COVID-19的CT影像,具有较高的准确率和鲁棒性。本系统的实现为医疗影像分析提供了新的解决方案,并具有广泛的应用前景。
算法流程
运行效果
运行 MainForm.m
新冠阳性
新冠阴性
这些图展示了基于MATLAB开发的CT影像识别系统的用户界面。该系统通过加载CT影像,并利用多种深度学习模型(如AlexNet、GoogLeNet和VGGNet)对影像进行分析,从而判断CT影像中是否存在COVID-19的阳性特征。
图中的界面分为几个部分:
(1)控制面板:位于界面的左侧,包含三个按钮,分别是“选择影像”、“智能识别”和“退出系统”。“选择影像”