基于深度学习的肠镜图像(息肉、肿瘤)检测

1.  毕业设计(论文)开题报告

  • 选题依据
  1. 研究背景

当前的医学图像分析需求。在临床实践中,医生常常需要从大量的医学图像中识别出病变组织,以便进行准确的诊断和治疗方案选择。然而,人工检测病变组织存在一定的局限性,如易受疲劳、经验等因素影响,可能存在误诊或漏诊的情况。因此,我旨在通过研究先进的图像识别技术、机器学习和深度学习模型,开发一种能够准确、高效地检测胃肠息肉的自动化系统。

2.国内外现状

  1. 国外现状

深度学习在国外的发展十分迅速。Yuan等人将旋转不变性和图像相似度引入算法,提出了用于内窥镜图像识别的RLLR-SENSENet网络;Fang等人将边缘信息引入算法,将网络分为区域提取和边缘提取2大分支,通过分支网络信息交互进行肠息肉信息的提取,但由于肠息肉成像差异息肉类型多样等导致检测结果假阳性高在算法优化方面:Fang等人将边缘信息引入算法,将网络分为区域提取和边缘提取2大分支,通过分支网络信息交互进行肠息肉信息的提取,但由于肠息肉成像差异大、息肉类型多样等导致检测结果假阳性高研究人员提出了许多新的优化算法,如自适应学习率算法、正则化算法、优化器算法等,这些算法可以提高深度学习模型的训练速度和精度。

  1. 国内现状

李龙岩展开了利用深度学习算法对结肠息肉图像分割算法的研究。针对目前结肠息肉的分割难点,设计了改进 HarDNet-MSEG 算法对结肠息肉进行分割,提高了结肠息肉图像分割模型的分割速度和分割精度,减少了模型的参数量。肖鹏从轻量化网络的角度出发,将卷积神经网络与 Vision Transformer 的优势相结合,提出了 MVT 轻量化分割网络,并Swin-transformer 引入其中,提出了 Swin-MVT 轻量化分割网络,在保证结肠镜息肉图像分割效果的基础上,该方法成功实现了参数量和计算量的降低.

3.研究意义

本课题的研究具有重要的现实意义和科学价值。首先,胃肠息肉是一种常见的消化道疾病,早期诊断和治疗对于预防消化道癌症具有重要意义。通过本课题的研究,我们能够提高胃肠息肉的检测准确性和敏感性,降低漏诊和误诊的风险,为临床医生提供更可靠的支持和辅助。其次,本课题的研究成果不仅可以应用于胃肠息肉的检测,还可以为其他医学图像分析领域提供借鉴和参考,推动医学图像技术的发展和应用。此外,本课题的研究还可以为人工智能技术在医学领域的应用提供新的思路和方法,具有广泛的应用前景和深远的社会效益。

二、研究内容

1.学术构想与思路

1.主要内容

本研究精心选用了U-net模型作为设计的核心。众所周知,目前市面上已涌现出众多自动化检测息肉的技术,它们均源于人类对息肉特征的精细手工描绘。然而,在图像检测和医学图像处理等诸多领域,深度学习技术已经大放异彩,其性能显著超越了传统方法。通过将卷积神经网络融入结肠镜图像的识别任务之中,CNN模型已能更加出色地应对肠镜息肉图像的多样化挑战。尽管如此,鉴于训练数据集的有限规模和网络结构的复杂性,卷积神经网络仍存局限性。在视觉识别的诸多场景中,特别是医学图像的处理过程中,理想的输出应当是具备精确定位的信息,也就是说,为图像中的每一个像素点赋予恰当的类别标签,而不仅限于对整幅图像进行分类标注。鉴于此,本文着眼于对U-net模型进行精炼改良(如图一所示),

旨在显著提升结肠镜图像中息肉检测的精确度,并借助结肠表面的凸起特征进一步增强图像分割的效果。对U-net网络的优化分为两大策略:(1)加入通道注意力机制;(2)加入网络注意力机制。接下来,将分别对这三种网络模型进行实验,并运行以得出结果,最终通过对比实验数据,以辨识哪一模型的准确率最为卓越。本课题主要分为四个部分。

  1. 数据来源

为了确保数据的准确性,本课题使用了开源数据集LIMUC中的上千张肠镜图像,将其按照八比二的比例划分为训练数据和测试数据。

  1. 数据预处理

首先,从多个来源收集包含胃肠息肉的图像数据集。然后,对数据进行预处理,包括图像标准化、去噪、裁剪等操作,以使图像数据更加规范化和易于分析。

  1. 模型测试与优化

根据内外结肠息肉分割的相关研究现状,目前的方法主要依赖人工设计的特征进行分割,而算法的准确度很大程度上依赖于这些特征。针对镜内息肉边界模糊和小目标难以定位等问题,本课题提出了对U-net模型进行改进以进行多特征识别。具体方法包括:

①加入通道注意力机制(图二):通道注意力自适应的校准每个通道的权重,这被看作是一个对象的选择过程,从而决定要注意什么。

②加入通道注意力机制(图三):寻找图像最主要部分进行处理

  1. 结果                                   

可视化可以用tensorboard对训练进行可视化,并用pillow库来进行图像的处理展示

2.拟解决的关键问题

问题

通过对U-net的结肠息肉图像分割模型进行训练。发现U-net存在很大的误检现象。并且对息肉的边界分割比较粗糙。  

2.拟采取的研究方法、技术路线、实施方案及可行性分析

1.研究方法

本文研究方法,是基于学校课程为基础,外加中国知网的对深度学习中的图像识别系统文献和b站某些教学视频。本课题进行检测息肉检测,用U-net网络模型与改进后的U-net网络模型来进行检测。针对镜内息肉边界的难区分以及小目标难以定位等问题,利用对U-net模型的改进来进行息肉多特征识别。1.要将U-net模型最后一层来增加准确率,可以引入注意力机制具体来说,可以在解码器的倒数第二层和完成上采样的解码器倒数第一层之间添加注意力模块卷积下采样的过程中加入了通道注意力和空间注意力。然后将俩种数据结果进行对比,得出那个准确率更高。            

                                 

  1. 技术路线及实施方案

(1)数据收集和预处理:首先,需要从多个来源收集包含胃肠息肉的图像数据集。然后,将进行数据预处理,包括图像标准化、去噪、裁剪等操作,以便使图像数据更加规范化和易于分析。同时,还将进行数据增强操作,如旋转、缩放、翻转等,以增加训练数据的多样性,这里将使用大量的图像别技术和算法并将数据分为训练数据和测试数据

(2)特征提取:使用U-NET模型来提取图像中的特征,并利用深度学习技术来自动提取更丰富的特征。将加入U-NET模型来提取图像中的特征,以便用于模型训练。同时,我们还将对特征进行优化和调整,以适应不同的图像类型和处理需求。

(3)网络模型:用U-Net的整个结构主要分为两个部分组成,一个是U型结构里面的编码器和解码器,编码器很主要作用来识别,捕获输入的图像中的上下文语义信息。解码器主要是顾名思义是利用编码后的高层语义信息和通过跳跃链接传递过来的细节特征,一起解码为训练的语义标签。                                                                    

4)模型验证和测试:使用独立的验证集和测试集来评估模型的性能,并根据反馈进行模型调整。我们将分别使用验证集和测试集来评估模型的性能和泛化能力,并根据反馈进行相应的调整和优化。同时,还将对模型进行实时测试和评估,以确保其能够在实时或接近实时的速度下运行,并满足临床应用的需求。

5对比实验:将实验结果进行对比,得出那个改进方法得出的准确率最高。        

6数据可视化:用tensorboard帮助我们可视化网络修炼过程中的个种参数,调整网络模型,网络参数         

                                                                                                       

3.可行性分析

从应用可行性角度来看,医生常常需要从大量的医学图像中识别出病变组织,以便进行准确的诊断和治疗方案选择。然而,人工检测病变组织存在一定的局限性。肠镜图像息肉检测可以帮助医生更好的,高效地检测胃肠息肉的自动化系统

从技术可行性角度来看,随着人工智能高度发展,本检测的系统可以采用机器学习算法、openCV(Python OpenCV图像处理和图像识别技术:图像处理的各种运算,包括图像点运算、形态学处理、图像锐化、图像增强、图像平滑等,研究图像识别、图像分割、图像分类、图像特效处理以及图像处理相关技术更好的检测图像的特征和识别。

 从经济可行性角度来看,测试系统由于其开发框架大多是开源的,和使用的软件等都是免费,除了数据原可能需要购买,除了需要花费大量的时间外,并无其他消费。所以本系统运行成本低,使用方便,在经济上是可行的。

三、研究计划及进度安排

起止时间

主要内容

预期目标

2023年11月11日-2023年12月24日

2023年12月25日-2024年2月7日

2024年2月8日-2024年4月6日

2024年4月7日-2024年4月22日

2024年4月23日-2024年5月6日

2024年5月7日-2024年5月30日

在查阅文献、广泛调研后,确定本课题的总体设计方案与结构

进一步整理分析文献资料,完成实验设计工作

通过设计思路的整理、完成实验方案和优化相关结果。初步完成毕业设计相关内容,写出论文初稿

完成论文终稿

将论文及相关材料汇总提交

进行论文答辩及后续的材料完善工作

完成开题报告

拟定写作提纲

顺利通过中期检查

完成论文重复率的自查

准备答辩PPT

完成答辩及后续修改工作

四、主要参考文献(宋体五号,行距固定值20磅,格式参考正文参考文献格式)

[1]许增宝, 苏树智, 胡天良. 高效多注意力融合的U-Net结直肠息肉图像分割算法[J]. 湖北民族大学学报(自然科学版), 2023, 41(03): 353-359.

[2]程立英, 刘祖琛, 谷利茹等. 基于深度学习的结肠息肉检测算法 [J]. 沈阳师范大学学报(自然科学版), 2023, 41(03): 274-279. 

[3]符道朋.基于深度学习的结肠息肉分割方法研究[D].南昌大学,2023.41(03):356-441.

[4]Xiaoke L, Honghuan C, Wenbing J. DRI-Net: segmentation of polyp in colonoscopy images using dense residual-inception network[J]. Frontiers in Physiology, 2023, 14: 1290820-1290820. 

[5]基于医疗影像大数据中心的异常图像标注及机器学习系统, 横向项目, 2019.9.11-

-2021.03.20.

 [6 ] AHN S B, HAN D S, BAE J H, et al. The miss rate forcolorectal adenoma determined by quality-adjusted, back-to-backcolonoscopies[J]. Gut Liver, 2012, 6(1): 64-70

  1. Yuan Yixuan, Meng M. Polyp classification based on bag of features and saliency inwireless capsule endoscopy[C]// IEEE International Conference on Robotics andAutomation (ICRA). Hong Kong: IEEE, 2014: 3930-3935.
  2. 黄胜,李松,向思皓,廖星. 基于注意力机制的胶囊内镜息肉目标检测网络. 中国. 发明专利. 202111474711.9[P]. 2021-12-06.41(30).289-360

[9] 赵立新,邢润哲,白银光,等. 深度学习在目标检测的研究综述[J]. 科学技术与工程,2021,21( 30) : 12787-12795.

[10] 王旭阳. 基于深度学习的食道癌图像检测技术的研究[D].兰州: 兰州大学,2017.

15(2):201-260

[11]Hu J,Shen L,Sun G. Squeeze-and-excitation networks[C]/ /Proceedings of the IEEE Conference on Computer Vision and Pat-tern Recognition. New York: IEEE,2018: 7132-7141.

[12]岳龙旺,魏青彪,程豪,等. 无环境阻力的尖端生长型软体机器人研究综述[J].科学技术与工程,2022,22 ( 6 ) :2159-2169.

[13]MISAWA M, KUDO S E, MORI Y, et al. Current status and futureperspective on artificial intelligence for lower endoscopy[J]. DigEndosc, 2021, 33(2): 273-284.

[14] Lim J. S., Astrid M., Yoon H. J., et al. Small object detection using context andattention[C]//2021 International Conference on Artificial Intelligence in Information andCommunication (ICAIIC). IEEE, 2021: 181-186

[15]金洪杨,董晓淦,魏青彪,刘景达,岳龙旺.面向胃息肉检测的深度学习神经网络优化[J].河南工业大学,河南牧业经济学院能源与智能工程学院.2023,23(15):150-23

指导教师意见

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扫地僧985

喜欢就支持一下,谢谢老板!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值