基于YOLOv8深度学习的智慧考场考试作弊行为自动检测与语音报警系统

随着教育领域的智能化发展,考场监督的效率和公平性成为亟待解决的问题。针对传统考场监控效率低、漏报和误报率高的问题,本文提出了一种基于YOLOv8深度学习的考试作弊行为自动检测与语音报警系统。该系统以PyQt5作为用户界面框架,集成了数据采集、模型训练、实时检测和语音报警等功能,能够对考场中常见的作弊行为进行分类和识别,包括“使用手机 (CellPhone)”、“传递作弊材料 (GivingCheats)”、“直接作弊 (Cheating)”、“偷看他人试卷 (LookingOver)”、“低头作弊 (LookingDown)”及“无作弊行为 (NotCheating)”。

系统设计包含以下关键模块:
1) 数据采集与预处理,基于真实考场环境构建多类别作弊行为数据集;
2) 基于YOLOv8的深度学习模型训练,优化模型的检测精度和速度;
3) 实时行为检测模块,通过高效推理实现对考场实时视频流的作弊行为检测;
4) 智能语音报警模块,及时提醒监考人员采取相应措施。实验结果表明,该系统在复杂考场环境中表现出高效性与鲁棒性,检测准确率高,且具备良好的实时性和用户体验。

本研究为智慧考场监控系统的开发提供了新思路,能够显著提升监考效率,保障考试公平性,具有广泛的应用前景。

算法流程

Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。

 

项目数据

Tipps:通过搜集关于数据集为各种各样的考试作弊相关图像,并使用Labelimg标注工具对每张图片进行标注,分6检测类别,分别是’使用手机作弊’,’传递作弊材料’,’考试直接作弊’,’偷看他人试卷’,’低头作弊查看’,’考生没有作弊’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。

完成后可进行后续的yolo训练方面的操作。

硬件环境

我们使用的是两种硬件平台配置进行系统调试和训练:
(1)外星人 Alienware M16笔记本电脑:

### 使用YOLOv11构建考试作弊检测系统的方案 尽管当前已有多个版本的YOLO被用于类似的场景,如YOLOv5[^2]、YOLOv8[^4]以及YOLOv10[^3],但关于YOLOv11的具体应用尚未有公开文档提及。然而,可以推测YOLOv11作为最新迭代版本,在性能优化、推理速度和精度方面可能较前代有所提升。 以下是基于现有技术和理论框架下,使用YOLOv11实现考试作弊检测系统的一般方法: #### 1. 数据集准备 为了训练一个有效的作弊检测模型,需要收集大量标注好的数据集。这些数据应包含各种作弊行为(例如“传递纸条”、“偷看他人试卷”等),并标记对应的类别。具体步骤如下: - 收集视频素材或图片库。 - 对每张图像进行人工或半自动标注,定义清晰的目标边界框及其所属类别。 此过程可参考YOLOv5的数据准备工作流程。 #### 2. 模型配置训练 YOLOv11预计会沿用其前辈的核心架构特点,同时引入更多改进机制来增强鲁棒性和效率。因此,需完成以下操作: - 编写`data.yaml`文件以指定路径、分类数和其他参数设置。 - 调整超参(batch size, learning rate等)以便适应特定任务需求。 - 利用预训练权重初始化网络层,从而加速收敛进程。 示例代码展示如何加载自定义数据源并启动训练阶段: ```python from ultralytics import YOLO model = YOLO('yolov11.pt') # 加载官方发布的基础模型或者迁移学习后的成果 results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640) ``` #### 3. 用户界面集成 为了让最终产品更加友好易用,还需开发配套图形化前端供管理员操控整个流程。这一步骤涉及但不限于以下几个模块的设计编码工作: - 展示摄像头输入流画面; - 动态更新预测结果列表; - 提供报警提示音效选项等等。 有关这部分的内容可以在先前讨论过的案例里找到灵感源泉。 #### 4. 部署上线 最后一步就是把经过充分验证合格的产品部署至实际环境中运行测试。考虑到跨平台兼容性问题,可以选择多种途径达成目的比如通过ONNX格式转换后再嵌入移动APP内部;又或者是借助Flask/Django搭建RESTful API服务端口对外提供访问接口。 --- ### 注意事项 由于目前尚无确切资料证明YOLOv11已经正式发布或是具备上述全部特性,请密切关注官方公告获取权威消息来源确认实际情况再做进一步规划调整策略方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值