基于YOLOv8深度学习的智慧考场考试作弊行为监测与分析系统

近年来,人工智能技术的快速发展推动了智慧教育的广泛应用,考场监测系统作为教育领域的重要组成部分,逐渐成为学术界和产业界的研究热点。然而,考试作弊行为的多样性和隐蔽性对考场公平性和管理效率构成了严峻挑战。传统的人工监考方法由于依赖人为观察,存在效率低下、误判率高和难以全面覆盖考场的弊端,难以满足现代化考场管理日益增长的需求。此外,随着科技的进步,智能手机和微型设备等高科技工具被用于作弊,使得作弊行为更加复杂化和隐秘化,进一步加剧了传统监考方法的局限性。因此,开发一种高效、智能化的作弊行为监测与分析系统成为智慧考场建设的重要任务。

为解决上述问题,本文提出了一种基于YOLOv8深度学习的考试作弊行为监测与分析系统。YOLOv8作为一种最新的目标检测模型,具有高精度和低延迟的显著优势,非常适合复杂场景下的实时检测任务。本文所设计的系统能够识别多种作弊行为,包括使用手机作弊、传递作弊材料、直接作弊、偷看他人试卷、低头查看等,还能区分考生未作弊的正常行为。通过结合数据增强、迁移学习和模型优化等技术,系统实现了在公开数据集与自建数据集上的高精度训练和测试结果。此外,该系统能够快速适应不同的考场布局和光线条件,满足实际应用需求,为智慧考场的管理提供了一种有效的技术手段。

实验结果表明,本文提出的基于YOLOv8的考试作弊行为监测系统在实际考场环境中具有良好的鲁棒性和高效性,检测精度和响应速度均显著优于传统监考方式和其他检测方法。系统不仅能够实时识别作弊行为,还能生成详细的行为分析报告,帮助教育管理者更好地了解作弊行为特征,为考试管理和政策制定提供数据支持。此外,该系统的模块化设计便于扩展,可进一步与智能监控摄像头和云端处理平台集成,为构建更加智能化、信息化的教育监测体系奠定了技术基础。未来,该系统有望在智慧教育中得到广泛应用,为保障考试公平性、提升教育质量和维护社会公正提供重要支持。

算法流程

Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。

项目数据

Tipps:通过搜集关于数据集为各种各样的考试作弊相关图像,并使用Labelimg标注工具对每张图片进行标注,分6检测类别,分别是’使用手机作弊’,’传递作弊材料’,’考试直接作弊’,’偷看他人试卷’,’低头作弊查看’,’考生没有作弊’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值