LDA原理

总结:
所有推导围绕一个中心:
类内距离最小,类间距离最大
以此构造出一个代价函数

J(θ)= (m2m1)2s12+s22

使之最大。

Linear Discriminant Analysis

2 二分类问题
原理小结:对于二分类LDA问题,简单点来说,是将带有类别标签的高维样本投影到一个向量w(一维空间)上,使得在该向量上样本的投影值达到类内距离最小、类内间距离最大(分类效果:具有最佳可分离性)。

接下来我们从定量的角度来找到这个最佳的w。

首先,计算每类样本的投影前后的均值,投影后的的均值也就是样本中心点的投影。

什么是最佳的投影向量w呢?我们首先发现,能够使投影后的两类样本均值点尽量间隔较远的就可能是最佳的,由此得到了代价函数的分子部分。

可样本点均匀分布在椭圆里,投影到横轴x1上时能够获得更大的中心点间距J(w),但是由于有重叠,x1不能分离样本点。投影到纵轴x2上,虽然J(w)较小,但是能够分离样本点。因此我们还需要考虑样本点之间的方差,方差越大,样本点越难以分离。我们使用另外一个度量值——散列值(Scatter)。散列值只是少除以样本数量的方差值,散列值的几何意义是样本点的密集程度,值越大,越分散,反之,越集中。而我们想要的投影后的样本点的样子是:不同类别的样本点越分开越好,同类的越聚集越好,也就是均值点间距离越大越好,散列值越小越好。由此得到分母部分,各集合散列值的叠加。

然后求导,拉格朗日乘子法!
在我们求导之前,需要对分母进行归一化,因为不做归一的话,w扩大任何倍,都成立,我们就无法确定w。这里w并不是唯一的,倘若w对应J(w)的极大值点,则a*w仍旧可以达到J(w)的极大值点。

对映射矩阵求导,通过求导结果即可求出映射矩阵值: SBwi=λSwwi

3 多分类情形
假设类别变成多个了,那么要怎么改变,才能保证投影后类别能够分离呢?我们之前讨论的是如何将d维降到一维,现在类别多了,一维可能已经不能满足要求。假设我们有C个类别,将其投影到K个基向量。
从类间散列度和类内散列度来考虑。

我们可以知道矩阵的实际意义是一个协方差矩阵,这个矩阵所刻画的是该类与样本总体之间的关系。矩阵对角线元素是该类相对样本总体的方差(即分散度),非对角线元素是该类样本总体均值的协方差(即该类和总体样本的相关联度或称冗余度),即是各个样本根据自己所属的类计算出样本与总体的协方差矩阵的总和,这从宏观上描述了所有类和总体之间的离散冗余程度。同理为分类内各个样本和所属类之间的协方差矩阵之和,它所刻画的是从总体来看类内各个样本与所属类之间(这里所刻画的类特性是由是类内各个样本的平均值矩阵构成)离散度,其实从中可以看出不管是类内的样本期望矩阵还是总体样本期望矩阵,它们都只是充当一个媒介作用,不管是类内还是类间离散度矩阵都是从宏观上刻画出类与类之间的样本的离散度和类内样本和样本之间的离散度。

上面讨论的都是在投影前的公式变化,但真正的J(w)的分子分母都是在投影后计算的。

由于我们得到的分子分母都是散列矩阵,要将矩阵变成实数,需要取行列式。又因为行列式的值实际上是矩阵特征值的积,一个特征值可以表示在该特征向量上的发散程度。因此我们使用行列式来计算(感性分析)。

整个问题又回归为求J(w)的最大值了,同理我们“固定”分母为1,然后求导,得出最后结果与上节得出的结论一样

最后还归结到了求矩阵的特征值上来了。首先协方差矩阵 S1wSB 的特征值,然后取前最大的K(投影向量的个数)个特征向量组成W矩阵即可。注意:由于 SB 中的( μiμ) 秩为1,因此 SB 的秩至多为C(类的个数C,矩阵的秩小于等于各个相加矩阵的秩的和)。由于知道了前C-1个 (μiμ0) 后,最后一个 (μcμ0) 可以由前面的来线性表示,因此秩至多为C-1。那么投影向量个数K最大为C-1,即投影后,样本特征向量维度最为C-1。特征值大的对应的特征向量分割性能最好。

由于 S1wSB 不一定是对称阵,因此得到的K个特征向量不一定正交,这也是与PCA不同的地方。

4.若干问题
4.1 类内离散度矩阵为奇异阵

即此种情况一般发生在小样本问题上,即样本的维度少于样本的个数。先经过PCA降维再用LDA。

4.2 多类问题目标函数为什么选择行列式
行列式与特征值有关,特征值之积等于行列式

4.3 与PCA比较
(1) PCA无需样本标签,属于无监督学习降维;
LDA需要样本标签,属于有监督学习降维。
二者均是寻找一定的特征向量w来降维的,其中,LDA抓住样本的判别特征,PCA则侧重描叙特征。概括来说,PCA选择样本点投影具有最大方差的方向,LDA选择分类性能最好的方向。

(2) PCA降维是直接和特征维度相关的,比如原始数据是d维的,那么PCA后,可以任意选取1维、2维,一直到d维都行(当然是对应特征值大的那些)。
LDA降维是直接和类别的个数C相关的,与数据本身的维度没关系,比如原始数据是d维的,一共有C个类别,那么LDA降维之后,一般就是1维,2维到C-1维进行选择(当然对应的特征值也是最大的一些)。要求降维后特征向量维度大于C-1的,不能使用LDA。
对于很多两类分类的情况,LDA之后就剩下1维,找到分类效果最好的一个阈值貌似就可以了。举个例子,假设图象分类,两个类别正例反例,每个图象10000维特征,那么LDA之后,就只有1维特征,并且这维特征的分类能力最好。

(3)PCA投影的坐标系都是正交的,而LDA根据类别的标注关注分类能力,因此不保证投影到的坐标系是正交的(一般都不正交)

具体参考(感谢部分【3】【4】)

4.4 使用限制
(1)LDA至多可生成C-1维子空间

LDA降维后的维度区间在[1,C-1],与原始特征数n无关,对于二值分类,最多投影到1维。

(2)LDA不适合对非高斯分布样本进行降维。

LDA假设数据服从单峰高斯分布,比如上面面的复杂数据结构,则难以处理。上图中红色区域表示一类样本,蓝色区域表示另一类,由于是2类,所以最多投影到1维上。不管在直线上怎么投影,都难使红色点和蓝色点内部凝聚,类间分离。

(3)LDA在样本分类信息依赖方差而不是均值时,效果不好。

LDA不能够进行有效分类,因为LDA过度依靠均值信息。

(4)LDA可能过度拟合数据。

5 LDA的变种
(1)非参数LDA。非参数LDA使用本地信息和K临近样本点来计算clip_image013,使得clip_image013[1]是全秩的,这样我们可以抽取多余C-1个特征向量。而且投影后分离效果更好。
(2)正交LDA。先找到最佳的特征向量,然后找与这个特征向量正交且最大化fisher条件的向量。这种方法也能摆脱C-1的限制。
(3)一般化LDA。引入了贝叶斯风险等理论。
(4)核函数LDA。将特征clip_image015,使用核函数来计算原始数据投影后,仍旧不能很好的分开的情形。
(5)2DLDA 和 step-wise LDA

感谢:
【1】http://www.cnblogs.com/engineerLF/p/5393119.html
【2】http://www.cnblogs.com/jerrylead/archive/2011/04/21/2024384.html
【3】http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html
【4】http://blog.csdn.net/itplus/article/details/11451327

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Z_shsf

来包瓜子嘛,谢谢客官~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值