[论文阅读]Using the Output Embedding to Improve Language Models

该论文探讨了神经网络语言模型中输入和输出嵌入矩阵的共享,即weight tying,以此提高语言模型的性能。实验表明,这种方法能降低困惑度(ppl),并在不牺牲性能的情况下减小神经转换模型的参数量。此外,提出了一种新的输出嵌入正则化方法,通过投影矩阵正则化提升模型效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文总结(Transformer中Embedding部分提到的权重共享)


论文名:Using the Output Embedding to Improve Language Models
论文作者:Ofir Press and Lior Wolf
期刊/会议名:EACL 2017
本文作者:XMU_MIAO

1)摘要

  我们研究了神经网络语言模型(NNLM)中顶层权重矩阵(输入嵌入矩阵和输出嵌入矩阵[pre-softmax映射矩阵]),我们证明了这个矩阵构成了有效的词嵌入。在训练语言模型时,我们建议绑定输入嵌入和输出嵌入(共享嵌入矩阵, weight    tying \textbf{weight\,\,tying} weighttying)。
  我们分析了生成的更新规则,并标明绑定后的嵌入矩阵更类似于输出嵌入矩阵的效果,而不是输入嵌入矩阵的效果。
  另外还提出了一种新的针对输出嵌入矩阵的正则化方法。在各种各样的神经语言模型上,我们的方法能够减少了 ppl(perplexity) \textbf{ppl(perplexity)} ppl(perplexity)
  最后,我们证明了 w e i g h t   t y i n g weight\,tying weightt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值