有符号数乘法运算

四位有符号数的乘法运算

首先在乘法运算a*b中,a为被乘数,b为乘数。在有符号数的乘法运算中,我们需要将被乘数和乘数先转化为补码进行乘法运算。关于原码、反码、补码的关系,可以查阅数电书,这里只简单地说一下,正数的原码=反码=补码;负数的补码是原码的最高位(符号位)保持不变,其余位分别取反;负数的补码是在反码的基础上加1。两个四位有符号二进制数相乘得到的结果是八位有符号二进制数。

那么在此基础上,可以将有符号数的乘法运算分为以下四种情况:

1、a与b均为正数

假设a=+5,b=+3

 

直接相乘,然后用最高位补齐8位(标蓝色的为扩展的符号位),再相加。又因为正数的补码就是其本身,所以得到结果00001111,化为十进制就是+15,正确。

2、a为正数,b为负数

假设a=+5,b=-3,则a的补码为0101,b的补码为1101。

 注意看标红的5个数字,本应该得到0101四位数,再按照扩展符号位的做法,得到00101五位数。但由于b的符号位为1(即b为负数),那么我们需要将得到的00101这五位数,均按位取反再加1,这样就能得到标红的11011了。

相加得到结果11110001,此时是补码,再求其原码得10001111,化为十进制为-15,正确。

3、a为负数,b为正数

假设a=-3,b=+5,则a的补码为1101,b的补码为0101。

 此时,由于b为正数,并不需要像第二种情况,b为负数那样将标红的数按位取反再加1。将得到的补码结果11110001,求其原码得10001111,化为十进制为-15,正确。

4、a与b均为负数

假设a=-5,b=-3,则a的补码为1011,b的补码为1101。

 相加可以得到已经溢出的结果,只取其低八位,得到00001111,正数的原码等于补码,所以化为十进制得+15,正确。

在定点数乘除运算中,有几种常见的方式: 1. **无符号数乘法运算**[^1]: 无符号数乘法直接对应于二进制位相乘,不考虑数值的正负。由于它们都是非负的,结果不会有溢出问题。 2. **原码乘法运算**: 原码乘法对每个操作数的符号位单独处理,先计算绝对值的乘积,然后根据两个操作数的符号决定结果的符号。比如,如果x和y都是正的,那么结果就是正的;如果有一个是负的,则结果是负的。但要注意,原码乘法可能需要额外的步骤来处理最高位的结果(如一位乘法后的移位和调整)。 3. **补码乘法运算**: 补码乘法则简化了符号判断的过程,通过将操作数转换为补码形式,乘法的结果直接是这两个补码的逐位乘积,然后根据最后一位的符号位确定最终结果。这种方法不需要额外处理最高位。 4. **无符号数除法运算**: 对于无符号数,除法通常意味着取余运算,即商是整数部分,余数是小数部分。无符号数不会发生除以零的情况。 5. **原码除法运算**: 原码除法同样复杂,涉及到移位和比较操作。当除数大于等于被除数时,可能会遇到错误,因为原码表示的负数可能会导致无法正确的除法操作。 6. **补码除法运算**: 虽然补码可以避免除零问题,但实现复杂的除法操作依然存在,通常依赖硬件支持或特定算法,比如长除法。 整数的乘除运算通常涉及这些基本步骤,但对于实际编程而言,许多现代编程语言提供了内置的库函数来执行这些操作,如`int * int`(乘法)、`int / int`(除法)等,这些函数内部会自动处理各种边界条件和溢出情况。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值