参考书籍:小灰的算法之旅
分类
首先更具时间复杂度分为3大类:
- 时间复杂度为O(n²)的排序算法:
- 冒泡排序
- 选择排序
- 插入排序
- 希尔排序
- 时间复杂度为O(n㏒n)的排序算法:
- 快速排序
- 归并排序
- 堆排序
- 时间复杂度为线性的排序算法:
- 计数排序
- 桶排序
- 基数排序
也可以根据其稳定性划分为稳定排序和不稳定排序
即如果值相同的元素在排序后仍然保持着排序前的顺序,则这样的排序算法是稳定排序;如果值相同的元素在排序后打乱了排序前的顺序,则这样的排序算法是不稳定排序。例如下面的例子。
冒泡排序
按照冒泡排序的思想,我们要把相邻的元素两两比较,当一个元素大于右侧相邻元素时,交换它们的位置;当一个元素小于或等于右侧相邻元素时,位置不变。
using System;
namespace ConsoleApp1
{
class Program
{
public static void MP_sort(ref int[] array)
{
//记录最后一次交换的位置
int lastExchangeIndex = 0;
// 无序数列的边界,每次比较只需要比到这里为止
int sortBorder = array.Length - 1;
for (int i = 0; i < array.Length - 1; i++)
{
//有序标记,每一轮的初始值都是true
bool isSorted = true;
for (int j = 0; j < sortBorder; j++)
{
int tmp = 0;
if (array[j] > array[j + 1])
{
tmp = array[j];
array[j] = array[j + 1];
array[j + 1] = tmp;
//因为有元素进行交换,所以不是有序的,标记变为false
isSorted = false;
//更新为最后一次交换元素的位置
lastExchangeIndex = j;
}
}
sortBorder = lastExchangeIndex;
if (isSorted)
{
break;
}
}
}
static void Main(string[] args)
{
int[] array = { 1, 7, 2, 10, 4, 3, 2, 9, 11 };
MP_sort(ref array);
foreach (int temp in array)
{
Console.Write(temp + " ");
}
}
}
}
快速排序
同冒泡排序一样,快速排序也属于交换排序,通过元素之间的比较和交换位置来达到排序的目的。
不同的是,冒泡排序在每一轮中只把1个元素冒泡到数列的一端,而快速排序则在每一轮挑选一个基准元素,并让其他比它大的元素移动到数列一边,比它小的元素移动到数列的另一边,从而把数列拆解成两个部分。
堆排序
1.把无序数组构建成二叉堆。需要从小到大排序,则构建成最大堆;需要从大到小排序,则构建成最小堆。
2.循环删除堆顶元素,替换到二叉堆的未尾,调整堆产生新的堆顶。
计数排序
这种排序算法是利用数组下标来确定元素的正确位置的。
桶排序
桶排序同样是一种线性时间的排序算法。类似于计数排序所创建的统计数组,桶排序需要创建若干个桶来协助排序。
每一个桶(bucket)代表一个区间范围,里面可以承载一个或多个元素。