蓝桥杯题目练习(猴子分苹果)

57 篇文章 0 订阅
10 篇文章 0 订阅

算法训练VIP 猴子分苹果

原题链接:猴子分苹果

题目描述
秋天到了,n只猴子采摘了一大堆苹果放到山洞里,约定第二天平分。这些猴子很崇拜猴王孙悟空,所以都想给他留一些苹果。第一只猴子悄悄来到山洞,把苹果平均分成n份,把剩下的m个苹果吃了,然后藏起来一份,最后把剩下的苹果重新合在一起。这些猴子依次悄悄来到山洞,都做同样的操作,恰好每次都剩下了m个苹果。第二天,这些猴子来到山洞,把剩下的苹果分成n分,巧了,还是剩下了m个。问,原来这些猴子至少采了多少个苹果。

数据规模和约定
0< m< n< 9
输入
两个整数,n m
输出
一个整数,表示原来苹果的数目
样例输入
5 1
样例输出
15621

思考:

在做这道题时,刚开始想的很复杂,后来在网上搜索后根据李政道教授的那道猴子分桃算术题来求解是非常高效的,思路如下:

可设苹果总数为x, 往总数里加(n-1)m个苹果使y = x + (n-1)m,这一步相当于是对每次的余数m添加(n-1)个,使得每次猴子分了桃后没有余数;

第一只猴子吃m个苹果再藏(x-m)(1/n)个,即第一只猴子共拿了(1/n)y个苹果,苹果剩((n-1)/n)y,依次计算下去则可以推算出第一天最后一个猴子分了后还剩((n-1)n/nn)y;

第二天只需要分配,所以当前所剩的桃子数量去除以猴子数量是一个整数,因为题目是至少,可以设平均分配数量为1,即((n-1)n/nn+1)y=1,要使该等式成立,则y = nn+1,再根据y = x + (n-1)m可以得到x = nn+1 - (n-1)m;

#include<iostream>
#include<algorithm>
#include<string>
#include<math.h>
using namespace std;
int  n, m;
long long sum;
int main()
{
	cin >> n >> m;
	sum = pow(n, n + 1) - (n - 1) * m;
	cout << sum;
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值