原文站点:https://senitco.github.io/2017/06/20/image-feature-LoG-DoG/
LoG(Laplacian of Gaussian)算子和DoG(Difference of Gaussian)算子是图像处理中实现极值点检测(Blob Detection)的两种方法。通过利用高斯函数卷积操作进行尺度变换,可以在不同的尺度空间检测到关键点(Key Point)或兴趣点(Interest Point),实现尺度不变性(Scale invariance)的特征点检测。
Laplacian of Gaussian(LoG)
Laplace算子通过对图像求取二阶导数的零交叉点(zero-cross)来进行边缘检测,其计算公式如下:
∇2f(x,y)=∂2f∂x2+∂2f∂y2
由于微分运算对噪声比较敏感,可以先对图像进行高斯平滑滤波,再使用Laplace算子进行边缘检测,以降低噪声的影响。由此便形成了用于极值点检测的LoG算子。常用的二维高斯函数如下:
Gσ(x,y)=12πσ2−−−−√exp(−x2+y22σ