图像特征之LoG算子与DoG算子

LoG和DoG算子是图像处理中用于极值点检测的方法,实现尺度不变性的特征点检测。LoG通过对图像求二阶导数的零交叉点进行边缘检测,而DoG是高斯函数的差分。两者既可检测边缘,也可检测局部极值点。通过定义不同尺寸的高斯核,能在不同尺度检测Blob。算法流程包括卷积操作、过零点或极值点检测及阈值化处理。
摘要由CSDN通过智能技术生成

原文站点:https://senitco.github.io/2017/06/20/image-feature-LoG-DoG/

  LoG(Laplacian of Gaussian)算子和DoG(Difference of Gaussian)算子是图像处理中实现极值点检测(Blob Detection)的两种方法。通过利用高斯函数卷积操作进行尺度变换,可以在不同的尺度空间检测到关键点(Key Point)或兴趣点(Interest Point),实现尺度不变性(Scale invariance)的特征点检测。

Laplacian of Gaussian(LoG)

  Laplace算子通过对图像求取二阶导数的零交叉点(zero-cross)来进行边缘检测,其计算公式如下:

2f(x,y)=2fx2+2fy2

由于微分运算对噪声比较敏感,可以先对图像进行高斯平滑滤波,再使用Laplace算子进行边缘检测,以降低噪声的影响。由此便形成了用于极值点检测的LoG算子。常用的二维高斯函数如下:
Gσ(x,y)=12πσ2exp(x2+y22σ
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值