CF660F Bear and Bowling 4 [斜率优化动态规划]

博客介绍了如何解决CF660F问题,即找到序列{ai}的最大价值x,利用斜率优化动态规划降低时间复杂度从O(N^2)到O(N log N)。通过建立前缀和关系,将问题转化为寻找上凸壳上的最优决策点,并使用二分查找确保斜率的单调性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B e a r   a n d   B o w l i n g   4 Bear\ and\ Bowling\ 4 Bear and Bowling 4


D e s c r i p t i o n \mathcal{Description} Description
给一个长度为 N N N 的序列 { a i } \{a_i\} { ai}, 求 max ⁡ x = 1 N − k + 1 ( ∑ i = 1 k i ⋅ a x + i − 1 ) \max\limits_{x=1}^{N-k+1}( \sum\limits_{i=1}^k i\cdot a_{x+i-1} ) x=1maxNk+1(i=1kiax+i1)

1 ≤ n ≤ 2 × 1 0 5 , ∣ a i ∣ ≤ 1 0 7 1\leq n\leq 2\times 10^5, |a_i|\leq 10^7 1n2×105,ai107


最 初 想 法 最初想法
暴 力 暴力 : O ( N ) O(N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值