题目:121. 买卖股票的最佳时机 - 力扣(Leetcode)
给定一个数组 prices
,它的第 i
个元素 prices[i]
表示一支给定股票第 i
天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0
。
示例 1:
输入:[7,1,5,3,6,4] 输出:5 解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。 注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
1 <= prices.length <= 105
0 <= prices[i] <= 104
思路:
简单题,循环一次,每次更新最大值和最小值和结果就行。
代码:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int ans=0;
int mmin=prices[0];
int maxx=prices[0];
for(int i=1;i<prices.size();i++)
{
if(prices[i]-mmin>ans)ans=prices[i]-mmin;
if(prices[i]>maxx)maxx=prices[i];
if(prices[i]<mmin)mmin=prices[i];
}
return ans;
}
};
力扣309
给定一个整数数组prices
,其中第 prices[i]
表示第 i
天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
- 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [1,2,3,0,2] 输出: 3 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
示例 2:
输入: prices = [1] 输出: 0
提示:
1 <= prices.length <= 5000
0 <= prices[i] <= 1000
思路:
对于每一天都有三种状态,dp[i][j]指的是目前最大收益
- 目前持有的股票dp[i][0]
- 目前不持有股票并且在冷冻期dp[i][1]
- 目前不持有股票并且不在冷冻期dp[i][2]
「处于冷冻期」指的是在第 i 天结束之后的状态
那对于每种状态的动态转移
dp[i][0],可能是正处于冷冻期,也可能才买了持有的股票。所以dp[i][0]=max(dp[i-1][1],dp[i-1][2]-prices[i]).
dp[i][1],说明前一天刚卖出,dp[i][1]=dp[i-1][0]+prices[i].
dp[i][2],说明这一天没有进行任何操作。如果这天不处于冷冻期,那就还是dp[i-1][2],如果处于冷冻期(那这一天过完就解冻了),是dp[i-1][1]。所以dp[i][2]=max(dp[i-1][1],dp[i-1][2]).
代码:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int dp[5005][3];
memset(dp,0,sizeof(dp));
dp[0][0]=-prices[0];
dp[0][1]=0;
dp[0][2]=0;
for(int i=1;i<prices.size();i++)
{
dp[i][0]=max(dp[i-1][0],dp[i-1][2]-prices[i]);
dp[i][1]=dp[i-1][0]+prices[i];
dp[i][2]=max(dp[i-1][1],dp[i-1][2]);
}
// int ans=max(dp[prices.size()-1][1],dp[prices.size()-1][2]);
// if(ans<0)return 0;
// else return ans;
return max(dp[prices.size()-1][1],dp[prices.size()-1][2]);
}
};