【深度之眼】Pytorch框架班第五期-Week7【任务1】第一节:模型保存与加载

序列化与反序列化

序列化与反序列化表示的是内存与硬盘之间的序列关系。
在这里插入图片描述

1、Pytorch中的序列化与反序列化

1、torch.save

主要参数:

  • obj: 对象
  • f: 输出路径

2、torch.load

主要参数:

  • f: 文件路径
  • map_location: 指定存放位置,cpu or gpu

Pytorch中保存模型的两种方法

法1:保存整个Module

torch.save(net, path)

法2:保存模型参数

state_dict = net.state_dict()
torch.save(state_dict, path)

断点续训练

在这里插入图片描述
模型和优化器随着迭代不断地变化,因此需要保存模型、优化器和迭代次数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值