实对称矩阵的对角化

矩阵与对角形相似( P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ)的条件

定理1
A A A 相似于对角形 Λ \Lambda Λ 的充要条件是 A A A n n n 个线性无关的特征向量

推论
如果 A A A n n n 个互异的特征值,则 A A A 一定相似于对角形 Λ \Lambda Λ。其中 Λ \Lambda Λ 对角线为 A A A 的特征值。

定理2
A ∼ Λ A \sim \Lambda AΛ 的充分必要条件是对每一个 K K K 重的特征根的基础解系有 K K K 个解

所有的实对称矩阵都能对角化!!!

实对称矩阵的对角化

n n n 阶实对称矩阵,它的 n n n 个特征值都是实数,并且它的特征向量都是实向量。

定理3
实对称矩阵 A A A 的不同特征值对应的特征向量一定正交。(对称: A T = A A^T=A AT=A)

正交相似
如果 A A A B B B 为同阶的方阵,如果存在正交矩阵 P P P,使得 P − 1 A P = B P^{-1}AP=B P1AP=B,则 A A A B B B 正交相似。

定理4
假设 A A A 是实对称矩阵,一定存在正交矩阵 Q Q Q 使得 Q − 1 A Q = Λ Q^{-1}AQ = \Lambda Q1AQ=Λ

实对称矩阵是对称于其主对角线的矩阵,即A = A^T,其中A^T表示矩阵A的转置。这样的矩阵总是可以对角化的,意味着存在一个正交矩阵P,使得P^TAP是一个对角矩阵D,即: \[ P^TAP = D \] 在这个对角矩阵D上,对角线元素就是原矩阵A的特征值,非对角线元素为0。在C语言中,对实对称矩阵进行对角化的一般步骤包括: 1. **计算特征值**:通过求解特征方程 |A - λI| = 0,其中λ是特征值,I是单位矩阵,找到矩阵A的所有特征值。 2. **计算特征向量**:对于每个特征值λ,找到对应的线性无关的特征向量v。因为实对称矩阵的特征向量是正交的,我们可以使用如Householder反射或Gram-Schmidt过程来确保它们满足这个条件。 3. **构造对角矩阵D**:将特征值放在对角线上形成对角矩阵。 4. **构建相似变换矩阵P**:特征向量构成矩阵P的列,每一列对应一个特征向量。 5. **对角化**:将矩阵A左乘以P的逆矩阵得到对角矩阵D,即\( A = PD^{-1}P^T \)。 ```c // 示例代码片段 #include <stdio.h> #include <math.h> void eigendecomposition(double matrix[], double eigenvalues[], double eigenvectors[], int size) { // ... 实现特征值和向量的计算 ... // 计算P并存储特征向量 for (int i = 0; i < size; i++) { // ... 生成正交列向量 ... } // 构建对角矩阵D for (int i = 0; i < size; i++) { eigenvectors[i][i] = eigenvalues[i]; } // 对角化过程 for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { matrix[i][j] = dot_product(eigenvectors[i], eigenvectors[j]); // 矩阵乘法 } } } double dot_product(double vector1[], double vector2[]) { // ... 实现两个向量的点积 ... } // 主函数调用示例 int main() { double a[size][size], d[size], p[size][size]; // 初始化矩阵... eigendecomposition(a, d, p, size); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值