实对称矩阵的对角化

矩阵与对角形相似( P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ)的条件

定理1
A A A 相似于对角形 Λ \Lambda Λ 的充要条件是 A A A n n n 个线性无关的特征向量

推论
如果 A A A n n n 个互异的特征值,则 A A A 一定相似于对角形 Λ \Lambda Λ。其中 Λ \Lambda Λ 对角线为 A A A 的特征值。

定理2
A ∼ Λ A \sim \Lambda AΛ 的充分必要条件是对每一个 K K K 重的特征根的基础解系有 K K K 个解

所有的实对称矩阵都能对角化!!!

实对称矩阵的对角化

n n n 阶实对称矩阵,它的 n n n 个特征值都是实数,并且它的特征向量都是实向量。

定理3
实对称矩阵 A A A 的不同特征值对应的特征向量一定正交。(对称: A T = A A^T=A AT=A)

正交相似
如果 A A A B B B 为同阶的方阵,如果存在正交矩阵 P P P,使得 P − 1 A P = B P^{-1}AP=B P1AP=B,则 A A A B B B 正交相似。

定理4
假设 A A A 是实对称矩阵,一定存在正交矩阵 Q Q Q 使得 Q − 1 A Q = Λ Q^{-1}AQ = \Lambda Q1AQ=Λ

相关推荐

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

Brignt_run

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值