【深度之眼】Pytorch框架班第五期-Week2【任务1】第一节:数据读取机制Dataloader与Dataset

本文详细介绍了使用机器学习进行人民币二分类的模型训练过程,涵盖了DataLoader与Dataset的使用,解释了Epoch、Iteration与Batchsize的概念,以及如何通过DataLoader实现数据的高效加载。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人民币二分类

在这里插入图片描述

机器学习模型训练步骤

在这里插入图片描述
在这里插入图片描述

DataLoader 与 Dataset

DataLoader

torch.utils.data.DataLoader
Data(dataset,
 	batch_size=1,
	shuffle=False,
 	sampler=None,
 	batch_sampler=None,
 	num_workers=0,
 	collate_fn=None,
 	pin_memory=False,
 	drop_list=False,
 	timeout=0,
 	worker_init_fn=None,
 	multiprocessing_context=None)

功能: 构建可迭代的数据装载器

  • dataset:Dataset类,决定数据从哪读取以及如何读取
  • batchsize:批大小
  • num_works: 是否多进程读取数据
  • shuffle:每个epoch是否乱序
  • drop_list:当样本数不能被batchsize整除时,是否舍弃最后一批数据

Epoch: 所有训练样本都已输入到模型中,称为一个Epoch
Iteration: 一批样本输入到模型中,称之为一个Iteration
Batchsize: 批大小,决定一个Epoch有多少个Iteration

在这里插入图片描述

Dataset

torch.utils.data.Dataset
class Dataset(object):
	def __getitem__(self, index):
		raise NotImplementedError
	def __add__(self, other):
		return ConcatDataset([self, other])

功能:Dataset抽象类,所有自定义个Dataset需要继承它,并且复写__getitem__()
getitem: 接收一个索引,返回一个样本

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值