特征值和特征向量

特征值和特征向量

定义

假设 A A A n n n 阶方阵(只有方阵才可以求特征值和特征向量),若存在一个数 λ \lambda λ,若存在非零列向量 α \alpha α,使得 A α = λ α A\alpha=\lambda\alpha Aα=λα λ \lambda λ 为一个特征值, α \alpha α 为对应 λ \lambda λ 的特征向量。其中 λ \lambda λ 可以为 0,特征向量不能为 0。

注1:用矩阵乘以向量相当于对向量进行线性替换,该向量通过矩阵从原来的空间替换成另一个空间的向量,且等于原始向量的 λ \lambda λ 倍。
注2:特征值一般可以单独出现,但是特征向量一定要给出它对应的特征值。

对上述公式进行变换可得 ( λ E − A ) α = 0 (\lambda E - A)\alpha = 0 (λEA)α=0,求非零列向量 α \alpha α,即求齐次线性方程组 ( λ E − A ) x = 0 (\lambda E - A)x = 0 (λEA)x=0 的非零解,而齐次线性方程组有非零解的充要条件是它的系数行列式等于零。

定义5.1.2 λ E − A \lambda E - A λEA 为特征矩阵, ∣ λ E − A ∣ |\lambda E - A| λEA 为行列式,化解后为特征多项式, ∣ λ E − A ∣ = 0 |\lambda E - A|=0 λEA=0 为特征方程,解出来方程的根为特征值 λ \lambda λ,也叫特征根。

结论

  1. λ \lambda λ A A A 的特征值, α \alpha α λ \lambda λ 对应的特征向量,若 C C C 不等于 0 C α C\alpha Cα 也是 λ \lambda λ 对应的特征向量。 A ( C α ) = λ ( C α ) A(C\alpha)=\lambda(C\alpha) A(Cα)=λ(Cα)。所以对于 λ \lambda λ 的特征向量不是唯一的,但是一个特征向量只能对应一个特征值。
  2. α 1 , α 2 \alpha_1,\alpha_2 α1,α2 λ \lambda λ 的特征向量,则 C 1 α 1 + C 2 α 2 C_1\alpha_1+C_2\alpha_2 C1α1+C2α2 也是 λ \lambda λ 的特征向量。 A ( C 1 α 1 + C 2 α 2 ) = C 1 A α 1 + C 2 A α 2 = C 1 λ α 1 + C 2 λ α 2 = λ ( C 1 α 1 + C 2 α 2 ) A(C_1\alpha_1+C_2\alpha_2)=C_1A\alpha_1+C_2A\alpha_2=C_1\lambda\alpha_1+C_2\lambda\alpha_2=\lambda(C_1\alpha_1+C_2\alpha_2) A(C1α1+C2α2)=C1Aα1+C2Aα2=C1λα1+C2λα2=λ(C1α1+C2α2)

特征值和特征向量的基本性质

性质1
A A A A T A^{T} AT 具有相同的特征值(行列式转置值不变),但其特征向量不一定相同。
∣ λ E − A T ∣ = ∣ λ E T − A T ∣ = ∣ ( λ E − A ) T ∣ = ∣ λ E − A ∣ |\lambda E-A^T|=|\lambda E^T-A^T|=|(\lambda E-A)^T|=|\lambda E-A| λEAT=λETAT=(λEA)T=λEA

性质2
① 矩阵 A A A 的每行元素绝对值之和小于 1, ∑ ∣ a i j ∣ < 1 \sum|a_{ij}|<1 aij<1 i = 1 , . . . , n i=1,...,n i=1,...,n;② 矩阵 A A A 的每列元素绝对值之和小于 1, ∑ ∣ a i j ∣ < 1 \sum|a_{ij}|<1 aij<1 j = 1 , . . . , n j=1,...,n j=1,...,n;则所有特征值的模小于1, ∣ λ k ∣ < 1 |\lambda_k|<1 λk<1

性质3
① 特征值之和为 A A A 主对角元素之和。
∑ i = 1 n a i i = ∑ i = 1 n λ i = t r ( A ) = 矩 阵 的 迹 \sum_{i=1}^{n}a_{ii}=\sum_{i=1}^{n}\lambda_{i}=tr(A)=矩阵的迹 i=1naii=i=1nλi=tr(A)=
②特征值之积为 A A A 的行列式。
λ 1 λ 2 . . . λ n = ∣ A ∣ \lambda_1\lambda_2...\lambda_n=|A| λ1λ2...λn=A
注3:若存在 λ i = 0 \lambda_i=0 λi=0,则 ∣ A ∣ = 0 |A|=0 A=0 A A A 不可逆。要想 A A A 可逆,则其所有的特征根都不等于零。
注4 A A A 可逆,则 ∣ A ∣ ≠ 0 |A|≠0 A=0 A A A 的秩等于 n n n;行/列向量线性无关; A x = 0 Ax=0 Ax=0 只有零解。

性质4
n n n 阶方阵 A A A 互不相同的特征值 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn 对应的特征向量 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn 线性无关。此处一个特征值对应一个特征向量。

性质5
λ 1 = 1 , λ 2 = 2 , λ 3 = 3 \lambda_1=1,\lambda_2=2,\lambda_3=3 λ1=1,λ2=2,λ3=3 互不相同,且 λ 1 \lambda_1 λ1 的两个特征向量线性无关; λ 2 \lambda_2 λ2 的三个特征向量线性无关; λ 3 \lambda_3 λ3 的一个特征向量线性无关;则 λ 1 \lambda_1 λ1 λ 6 \lambda_6 λ6 的所有特征向量都线性无关。此处一个特征值对应多个特征向量。

性质6
λ \lambda λ A A A 的特征多项式的 K K K 重特征根, A A A 对应的线性无关的特征向量最多为 K K K 个。特别的, λ \lambda λ A A A 的单根,那么对应的线性无关的特征向量仅有一个。注: K K K 重特征根对应的线性无关的特征向量的个数小于等于 K K K

其他性质

  1. K λ K\lambda Kλ K A KA KA 的特征值。 ( 3 A ) α = ( 3 λ ) α (3A)\alpha=(3\lambda)\alpha (3A)α=(3λ)α
  2. λ k \lambda^k λk A k A^k Ak 的特征值。 A 2 α = λ A α = λ 2 α A^2\alpha=\lambda A\alpha=\lambda^2\alpha A2α=λAα=λ2α
  3. 假设多项式 f ( x ) f(x) f(x),则 f ( λ ) f(\lambda) f(λ) f ( A ) f(A) f(A) 特征值。 λ = 2 , f ( A ) = A 5 + 6 A 2 + A + 3 E = 61 \lambda=2,f(A)=A^5+6A^2+A+3E=61 λ=2,f(A)=A5+6A2+A+3E=61
  4. A α = λ α A\alpha=\lambda\alpha Aα=λα 1 λ \frac{1}{\lambda} λ1 A − 1 A^{-1} A1 的特征值。
  5. 1 λ ∣ A ∣ \frac{1}{\lambda}|A| λ1A A ∗ A^{*} A 的特征值。(注: A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A)
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值