目标跟踪是计算机视觉领域中的一个重要任务,它涉及在视频序列中准确地跟踪移动目标。其中,粒子滤波目标追踪是一种常用的方法,而DeepSORT多目标追踪模型是一种基于神经网络的目标跟踪方法。在本文中,我们将详细介绍这两种方法,并提供相应的源代码示例。
- 粒子滤波目标追踪
粒子滤波目标追踪是一种基于贝叶斯滤波理论的目标跟踪方法。它通过使用一组表示目标可能位置的粒子来估计目标的状态。在每一帧中,通过对粒子进行重采样和更新,可以动态地跟踪目标的位置和运动。
下面是一个简单的粒子滤波目标追踪的示例代码:
import numpy as np
def particle_filter_tracking(measurements, initial_state, num_particles, motion_model