张量分析学习笔记三——张量积

个人专栏—张量分析专栏

  1. 张量分析学习笔记一——张量分析基本概念 张量分析学习笔记一——张量分析基本概念(https://blog.csdn.net/Zh531445436/article/details/136374766?spm=1001.2014.3001.5502)
  2. 张量分析学习笔记二——克罗内克符号与置换符号 张量分析学习笔记二——克罗内克符号与置换符号
  3. 张量分析学习笔记三——张量积 张量分析学习笔记三——张量积
  4. 张量分析学习笔记四——张量的基本运算法则 张量分析学习笔记四——张量的基本运算法则


简介 \color{green}简介 简介

张量积(tensor product)是一种在线性代数和多线性代数中常见的运算。它用于将两个向量空间的向量组合成一个更大的向量空间。

张量积 \color{green}张量积 张量积 ⊗ \otimes 定义

设有两向量 v ⃗ , u ⃗ \vec{v},\vec{u} v ,u ,它们的张量积表示为
u ⃗ v ⃗ ≡ u ⃗ ⊗ v ⃗ = A \vec{u}\vec{v}\equiv\vec{u}\otimes\vec{v}=\mathbf{A} u v u v =A
向量 v ⃗ ⊗ u ⃗ \vec{v}\otimes \vec{u} v u 组成了一个新的二阶张量 A \mathbf{A} A A \mathbf{A} A中每个元素 A i j A_{ij} Aij都是 v ⃗ , u ⃗ \vec{v},\vec{u} v ,u 对应元素的乘积,它包含了 v ⃗ , u ⃗ \vec{v},\vec{u} v ,u 元素的所有组合。

在笛卡尔坐标系(Cartesian system)中张量积的表现形式:
A = u ⃗ ⊗ v ⃗ = ( u i e ^ i ) ⊗ ( v j e ^ j ) = u i v j ( e ^ i ⊗ e ^ j ) = A i j ( e ^ i ⊗ e ^ j ) A ⏟ 张量 = A i j ⏟ 分量 e ^ i ⊗ e ^ j ⏟ 坐标系 \begin{aligned} \mathbf{A}&=\vec{u}\otimes\vec{v}=(u_i\hat{e}_i)\otimes(v_j\hat{e}_j)\\ &=u_iv_j(\hat{e}_i\otimes\hat{e}_j)\\ &=A_{ij}(\hat{e}_i\otimes\hat{e}_j)\\ \underbrace{\mathbf{A}}_{张量}&=\underbrace{A_{ij}}_{分量}\underbrace{\hat{e}_i\otimes\hat{e}_j}_{坐标系} \end{aligned} A张量 A=u v =(uie^i)(vje^j)=uivj(e^ie^j)=Aij(e^ie^j)=分量 Aij坐标系 e^ie^j
由此可知
二阶张量 U = U i j e ^ i ⊗ e ^ j 三阶张量 T = T i j k e ^ i ⊗ e ^ j ⊗ e ^ k 四阶张量 I = I i j k l e ^ i ⊗ e ^ j ⊗ e ^ k ⊗ e ^ l ( i , j , k , l = 1 , 2 , 3 ) \begin{aligned} \textit{二阶张量}\quad \mathbf{U}&=U_{ij}\hat{e}_i\otimes\hat{e}_j\\ \textit{三阶张量}\quad \mathbf{T}&=T_{ijk}\hat{e}_i\otimes\hat{e}_j\otimes\hat{e}_k \\ \textit{四阶张量}\quad \mathbb{I}&=\mathbb{I}_{ijkl}\hat{e}_i\otimes\hat{e}_j\otimes\hat{e}_k\otimes\hat{e}_l \quad (i,j,k,l=1,2,3) \end{aligned} 二阶张量U三阶张量T四阶张量I=Uije^ie^j=Tijke^ie^je^k=Iijkle^ie^je^ke^l(i,j,k,l=1,2,3)

其中,由自由指标的个数 n n n可以确定张量的阶数,张量分量的个数由 a n a^n an确定, a a a为自由指标能够取得的最大值。

二阶张量 $\mathbf{A}=\vec{u}\otimes\vec{v} $的张量分量可以表示为

( A ) i j = ( u ⃗ ⊗ v ⃗ ) i j = u i v j = A i j ( A ) i j  的矩阵形式为 ( A ) i j = A i j = [ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] \begin{gathered} (\mathbf{A})_{ij}=(\vec{u}\otimes\vec{v})_{ij}=u_iv_j=A_{ij} \\ (\mathbf{A})_{ij}\text{ 的矩阵形式为} \quad (\mathbf{A})_{ij}=A_{ij}=\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \end{gathered} (A)ij=(u v )ij=uivj=Aij(A)ij 的矩阵形式为(A)ij=Aij= A11A21A31A12A22A32A13A23A33

应用示例 \color{green}应用示例 应用示例

确定张量 v i , Ψ i j k , F i j j , ε i j , C i j k l , σ i j {v}_i,\Psi_{ijk},{F}_{ijj},\varepsilon_{ij},\mathbb{C}_{ijkl},\sigma_{ij} vi,Ψijk,Fijj,εij,Cijkl,σij的阶数,并计算张量 $\mathbb{C} $的分量个数。

解:由自由指标个数确定张量阶数:

  • 一阶张量 v i , F i j j {v}_i,{F}_{ijj} vi,Fijj

  • 二阶张量 ε i j , σ i j \varepsilon_{ij}, \sigma_{ij} εij,σij

  • 三阶张量 $\Psi_{ijk} $

  • 四阶张量 $ \mathbb{C}_{ijkl}$

$i,j,k,l=1,2,3 $时,自由指标能取得最大值为3,则 $\mathbb{C} $的张量分量个数为

3 4 = ( i = 3 ) × ( j = 3 ) × ( k = 3 ) × ( l = 3 ) = 81 3^4=(i=3)\times(j=3)\times(k=3)\times(l=3)=81 34=(i=3)×(j=3)×(k=3)×(l=3)=81

张量积性质 \color{green}张量积性质 张量积性质

  • 0 ⊗ u ⃗ = u ⃗ ⊗ 0 = 0 0\otimes \vec{u}=\vec{u}\otimes 0=0 0u =u 0=0

  • ( u ⃗ + v ⃗ ) ⊗ x ⃗ = u ⃗ ⊗ x ⃗ + v ⃗ ⊗ x ⃗ (\vec{u}+\vec{v})\otimes \vec{x}=\vec{u}\otimes \vec{x}+\vec{v}\otimes \vec{x} (u +v )x =u x +v x

  • ( u ⃗ ⊗ v ⃗ ) ⊗ x ⃗ = u ⃗ ⊗ ( v ⃗ ⊗ x ⃗ ) (\vec{u}\otimes \vec{v})\otimes \vec{x}=\vec{u}\otimes (\vec{v}\otimes\vec{x}) (u v )x =u (v x )

  • ( u ⃗ ⊗ v ⃗ ) ⊗ ( C ⊗ D ) = ( A C ) ( B D ) (\vec{u}\otimes \vec{v})\otimes (\mathbf{C}\otimes \mathbf{D})=(AC)(BD) (u v )(CD)=(AC)(BD)

  • u ⃗ ⊗ v ⃗ ≠ v ⃗ ⊗ u ⃗ \vec{u}\otimes\vec{v}\neq \vec{v}\otimes\vec{u} u v =v u

  • u ⃗ ⊗ ( α v ⃗ + β w ⃗ ) = α u ⃗ ⊗ v ⃗ + β u ⃗ ⊗ w ⃗ \vec{u}\otimes(\alpha \vec{v}+\beta \vec{w})=\alpha\vec{u}\otimes\vec{v}+\beta\vec{u}\otimes\vec{w} u (αv +βw )=αu v +βu w


欢迎对Abaqus感兴趣的朋友们查看:Abaqus-UMAT开发精品书籍及umat子程序学习
在这里插入图片描述

Abaqus非线性粘弹性模型子程序umat——广义MAXWELL粘弹性模型umat解析(朱-王-唐本构模型)

在这里插入图片描述

如果你喜欢以上内容,或者对张量分析学习有兴趣,欢迎收藏关注,博主将持续更新。你的关注、收藏是我持续创作的动力!

  • 24
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科研拓展人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值