张量及张量积的概念

张量及张量积的概念

标签(空格分隔): 数学基础知识


今日阅读论文《Observer-Based Event-Triggered Consensus Control of Two-Layer Networks with Switching Topologies》,见运算符( ⊗ \otimes ),只觉眼熟,一知半解,遂查阅。

###协变与反变
从线性空间 V \mathbf{V} V 和其对偶空间 V ∗ \mathbf{V}^{*} V谈起, 首先介绍张量理论中协变与反变理论。

定义线性空间上的线性函数。设 V V V 是一个线性空间,映射 f : V → R f: V \rightarrow \mathbb{R} f:VR, 满足

  1. f ( x + y ) = f ( x ) + f ( y ) ; f(x+y)=f(x)+f(y) ; f(x+y)=f(x)+f(y);
  2. f ( k x ) = k f ( x ) f(k x)=k f(x) f(kx)=kf(x).
    则称 f f f V V V 上的一个线性函数。
    进一步地,将 V V V 上的全体线性函数看作是一个集合,并且定义线性函数的加法和数量乘法
  3. ( f + g ) ( x ) = f ( x ) + g ( x ) (f+g)(x)=f(x)+g(x) (f+g)(x)=f(x)+g(x);
  4. ( k f ) ( x ) = k f ( x ) (k f)(x)=k f(x) (kf)(x)=kf(x).
    于是可以自行验证,这样的集合构成了一个线性空间,称它为 V V V 的对偶空间,记为 V ∗ V^{*} V.

V ∗ → R V^{*} \rightarrow \mathbb{R} VR 的映射为 V V V 的一个反变,称 V → R V \rightarrow \mathbb{R} VR 的映射为 V V V 的一个协变。按照上面的观 点,空间 V V V 的反变就是它自己所属的向量,空间 V V V 的协变就是 V ∗ V^{*} V 所属的向量。
###多重线性函数
将线性空间上的线性函数概念做适当的推广。

V 1 , V 2 , ⋯   , V p V_{1}, V_{2}, \cdots, V_{p} V1,V2,,Vp 分别是一个线性空间,它们的维数分别是 n 1 , n 2 , ⋯   , n p n_{1}, n_{2}, \cdots, n_{p} n1,n2,,np, 映射 f : V 1 × V 2 × ⋯ × V p → R f: V_{1} \times V_{2} \times \cdots \times V_{p} \rightarrow \mathbb{R} f:V1×V2××VpR 满足

  1. f ( ⋯   , u + v , ⋯   ) = f ( ⋯   , u , ⋯   ) + f ( ⋯   , v , ⋯   ) ; f(\cdots, u+v, \cdots)=f(\cdots, u, \cdots)+f(\cdots, v, \cdots) ; f(,u+v,)=f(,u,)+f(,v,);
  2. f ( ⋯   , λ u , ⋯   ) = λ f ( ⋯   , u ⋯   ) f(\cdots, \lambda u, \cdots)=\lambda f(\cdots, u \cdots) f(,λu,)=λf(,u).
    则称 f f f V 1 × V 2 × ⋯ × V p V_{1} \times V_{2} \times \cdots \times V_{p} V1×V2××Vp 上的一个 p p p 重线性函数。
    V 1 × V 2 × ⋯ × V p V_{1} \times V_{2} \times \cdots \times V_{p} V1×V2××Vp 上的全体 p p p 重线性函数构成的集合记为 L ( V 1 , ⋯   , V p ; R ) \mathscr{L}\left(V_{1}, \cdots, V_{p} ; \mathbb{R}\right) L(V1,,Vp;R), 特 别地,对偶空间 V ∗ V^{*} V 就是关于空间 V V V L ( V ; R ) \mathscr{L}(V ; \mathbb{R}) L(V;R).

在有关对偶空间的讨论中,我们指出关于空间 V V V 的基 { e 1 , ⋯   , e n } \left\{e_{1}, \cdots, e_{n}\right\} {e1,,en}, 相应的对偶空间 V ∗ V^{*} V 的 对偶基是 { r 1 , ⋯   , r n } \left\{r_{1}, \cdots, r_{n}\right\} {r1,,rn} ,其中 r 1 r_{1} r1 e 1 e_{1} e1 映成 1, 将 e 2 , ⋯   , e n e_{2}, \cdots, e_{n} e2,,en 映成零,以此类推。
作为推广,在集合 L ( V 1 , ⋯   , V p ; R ) \mathscr{L}\left(V_{1}, \cdots, V_{p} ; \mathbb{R}\right) L(V1,,Vp;R) 中取出 n 1 n 2 ⋯ n p n_{1} n_{2} \cdots n_{p} n1n2np 个元素 { r i 1 , i 2 , ⋯   , i p } \left\{r_{i_{1}, i_{2}, \cdots, i_{p}}\right\} {ri1,i2,,ip}, 其中满 足 i j ∈ { 1 , ⋯   , n i } i_{j} \in\left\{1, \cdots, n_{i}\right\} ij{1,,ni}, 元素 r i 1 , i 2 , ⋯   , i p r_{i_{1}, i_{2}, \cdots, i_{p}} ri1,i2,,ip 将多重基向量 ( e 1 ; i 1 , ⋯   , e p ; i p ) \left(e_{1 ; i_{1}}, \cdots, e_{p ; i_{p}}\right) (e1;i1,,ep;ip) 映成 1, 这里取空 间 V k V_{k} Vk 的基是 { e k ; 1 , ⋯   , e k ; n } \left\{e_{k ; 1}, \cdots, e_{k ; n}\right\} {ek;1,,ek;n}, 将其它多重基向量映成零,于是这 n 1 n 2 ⋯ n p n_{1} n_{2} \cdots n_{p} n1n2np 个元素线 性无关,且对于任意 f ∈ L ( V 1 , ⋯   , V p ; R ) f \in \mathscr{L}\left(V_{1}, \cdots, V_{p} ; \mathbb{R}\right) fL(V1,,Vp;R), 存在 n 1 n 2 ⋯ n p n_{1} n_{2} \cdots n_{p} n1n2np 个实数,使得
f = ∑ i 1 = 1 n 1 ⋯ ∑ i p = 1 n p k i 1 , ⋯   , i p r i 1 , i 2 , ⋯   , i p f=\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{p}=1}^{n_{p}} k_{i_{1}}, \cdots, i_{p} r_{i_{1}, i_{2}, \cdots, i_{p}} f=i1=1n1ip=1npki1,,ipri1,i2,,ip
所以说,集合 L ( V 1 , ⋯   , V p ; R ) \mathscr{L}\left(V_{1}, \cdots, V_{p} ; \mathbb{R}\right) L(V1,,Vp;R) 是一个 n 1 n 2 ⋯ n p n_{1} n_{2} \cdots n_{p} n1n2np 维线性空间。

例:以欧氏空间(其特征是具有内积运算)为例,说明建立多重线性空间概念的价值。
x , y x,y x,y 分别是一个 n n n 维欧式空间上的向量, 则
x ⋅ y = ∑ i = 1 n x i y i x \cdot y=\sum_{i=1}^{n} x_{i} y_{i} xy=i=1nxiyi
其中 x i , y i x_{i}, y_{i} xi,yi 分别是 x , y x, y x,y 的坐标分量。你会发现,这种对向量做内积的运算就是关于欧式空间的 一个二重线性函数
f ( x , y ) = ∑ i = 1 n ∑ j = 1 n k i , j r i , j ( x , y ) f(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{n} k_{i, j} r_{i, j}(x, y) f(x,y)=i=1nj=1nki,jri,j(x,y)
只不过它相当简单,其中的多重坐标分量可以用一个矩阵表示,并且它恰好是一个单位矩阵。

###张量的定义

张量的定义:
对于线性空间 V V V, 构造一个 p + q p+q p+q 重线性函数 f : ( V ∗ ) p × V q → R f:\left(V^{*}\right)^{p} \times V^{q} \rightarrow \mathbb{R} f:(V)p×VqR 则称 f f f V V V 上的一个 ( p , q ) (p, q) (p,q) 型张量,或者一个 p + q p+q p+q 阶张量,称 p p p f f f 的反变阶数,称 q q q f f f 的协变阶数。 特别地,空间 V V V 自身的元素就是 V V V 上的一个 ( 1 , 0 ) (1,0) (1,0) 型张量,空间 V V V 的对偶空间 V ∗ V^{*} V 上的元素就是 V V V 上的一个 ( 0 , 1 ) (0,1) (0,1) 型张量。这说明一阶张量就是我们以往所说的向量。 称 V V V 上的 ( p , 0 ) (p, 0) (p,0) 型张量为 p p p 阶反变张量,称 V V V 上的 ( 0 , q ) (0, q) (0,q) 型张量为 q q q 阶协变张量。

采取张量的观点看待欧式空间上的内积。取单位正交基 e 1 = ( 1 , 0 , ⋯   , 0 ) , ⋯   , e n = ( 0 , ⋯   , 0 , 1 ) e_{1}=(1,0, \cdots, 0), \cdots, e_{n}=(0, \cdots, 0,1) e1=(1,0,,0),,en=(0,,0,1),
另取两个向量
x = ( x 1 , ⋯   , x n ) , y = ( y 1 , ⋯   , y n ) x=\left(x_{1}, \cdots, x_{n}\right), \quad y=\left(y_{1}, \cdots, y_{n}\right) x=(x1,,xn),y=(y1,,yn)
做标准内积运算
x ⋅ y = ∑ j 1 = 1 n ∑ j 2 = 1 n x j 1 y j 2 e j 1 ⋅ e j 2 x \cdot y=\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} x_{j_{1}} y_{j_{2}} e_{j_{1}} \cdot e_{j_{2}} xy=j1=1nj2=1nxj1yj2ej1ej2
其中
e j 1 ⋅ e j 2 = { 1 , j 1 = j 2 0 , j 1 ≠ j 2 e_{j_{1}} \cdot e_{j_{2}}= \begin{cases}1, & j_{1}=j_{2} \\ 0, & j_{1} \neq j_{2}\end{cases} ej1ej2={1,0,j1=j2j1=j2
可以看出标准内积运算是欧式空间上的一个二阶协变张量
f = ∑ j 1 = 1 n ∑ j 2 = 1 n k j 1 , j 2 f j 1 , j 2 f=\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} k_{j_{1}, j_{2}} f_{j_{1}, j_{2}} f=j1=1nj2=1nkj1,j2fj1,j2
其中的分量 k j 1 , j 2 k_{j_{1}, j_{2}} kj1,j2 构成单位矩阵。
而在线性代数课上讨论的 n n n 维空间 V V V 上的线性变换
f ( x ) = A x f(x)=A x f(x)=Ax
其中 A A A 是一个 n n n 级方阵,是一个 ( 1 , 1 ) (1,1) (1,1) 型张量,相应的分量 k i , j k_{i, j} ki,j 就是方阵 A A A 的分量。 这两个例子说明,以前用方阵表达的那些事物,可以被看作是二阶张量。
综上,可以直观地把 r r r 阶张量看作是 r r r 维的方阵。

张量积

f , g f, g f,g 分别是一个 s , t s, t s,t 重线性函数,则 f f f g g g 的张量积定义为
( f ⊗ g ) ( x 1 , ⋯   , x s , y 1 , ⋯   , y t ) = f ( x 1 , ⋯   , x s ) g ( y 1 , ⋯   , y t ) \begin{aligned} &(f \otimes g)\left(x_{1}, \cdots, x_{s}, y_{1}, \cdots, y_{t}\right) \\ &=f\left(x_{1}, \cdots, x_{s}\right) g\left(y_{1}, \cdots, y_{t}\right) \end{aligned} (fg)(x1,,xs,y1,,yt)=f(x1,,xs)g(y1,,yt)
这里的 x i , y j x_{i}, y_{j} xi,yj 是向量。于是 f ⊗ g f \otimes g fg 是一个 s + t s+t s+t 重线性函数。容易看出张量积的结合律,也 就是说你可以写 f ⊗ g ⊗ h f \otimes g \otimes h fgh 而不必添加括号。 我们给出线性空间的张量积。设 U , V U, V U,V 分别是一个 m , n m, n m,n 维线性空间,取 u ∈ U , v ∈ V u \in U, v \in V uU,vV, 则 u , v u, v u,v 可以分别看作是 U ∗ , V ∗ U^{*}, V^{*} U,V 上的线性函数,于是 u ⊗ v u \otimes v uv 有意义。
定义 U ⊗ V = { u ⊗ v : v ∈ U ∧ v ∈ V } U \otimes V=\{u \otimes v: v \in U \wedge v \in V\} UV={uv:vUvV}, 于是 U ⊗ V U \otimes V UV 成为一个二重线性空间,也是一个 m n m n mn 维线性空间。
###张量积的运算
张量积:
A ⊗ B = [ a 11 B … a 1 n B … … … a m 1 B … a m m B ] m × p , n × q A \otimes B=\left[\begin{array}{ccc} a_{11} B & \ldots & a_{1 n} B \\ \ldots & \ldots & \ldots \\ a_{m 1} B & \ldots & a_{m m} B \end{array}\right]_{m \times p, n \times q} AB=a11Bam1Ba1nBammBm×p,n×q
张量积性质:
(1)右进法则:
[ A B C D ] ⊗ E = [ A ⊗ E B ⊗ E C ⊗ E D ⊗ E ] \left[\begin{array}{ll} A & B \\ C & D \end{array}\right] \otimes E=\left[\begin{array}{ll} A \otimes E & B \otimes E \\ C \otimes E & D \otimes E \end{array}\right] [ACBD]E=[AECEBEDE]
(2) 左进法则不成立
(3)吸收公式: ( A 1 ⊗ B 1 ) ( A 2 ⊗ B 2 ) = ( A 1 A 2 ⊗ B 1 B 2 ) \left(A_{1} \otimes B_{1}\right)\left(A_{2} \otimes B_{2}\right)=\left(A_{1} A_{2} \otimes B_{1} B_{2}\right) (A1B1)(A2B2)=(A1A2B1B2)
 (4)  ( A ⊗ B ) H = A H ⊗ B H  (5)  ( A ⊗ B ) + = A + ⊗ B + (6)  ( A ⊗ B ) − 1 = A − 1 ⊗ B − 1  (7)  A = A m × m , B = B n × n , tr ⁡ ( A ⊗ B ) = tr ⁡ ( A ) tr ⁡ ( B )  (8)  A = A m × m , B = B n × n , det ⁡ ( A ⊗ B ) = det ⁡ ( A ) n det ⁡ ( B ) m \begin{aligned} &\text { (4) }(A \otimes B)^{H}=A^{H} \otimes B^{H} \\ &\text { (5) }(A \otimes B)^{+}=A^{+} \otimes B^{+} \\ &\text {(6) }(A \otimes B)^{-1}=A^{-1} \otimes B^{-1} \\ &\text { (7) } A=A_{m \times m}, B=B_{n \times n}, \operatorname{tr}(A \otimes B)=\operatorname{tr}(A) \operatorname{tr}(B) \\ &\text { (8) } A=A_{m \times m}, B=B_{n \times n}, \operatorname{det}(A \otimes B)=\operatorname{det}(A)^{n} \operatorname{det}(B)^{m} \end{aligned}  (4) (AB)H=AHBH (5) (AB)+=A+B+(6) (AB)1=A1B1 (7) A=Am×m,B=Bn×n,tr(AB)=tr(A)tr(B) (8) A=Am×m,B=Bn×n,det(AB)=det(A)ndet(B)m
张量积的用法:
(1)求广义逆:
(i)
[ A 0 ] + = ( [ 1 0 ] ⊗ A ) + = [ 1 0 ] + ⊗ A + = [ 1 0 ] ⊗ A + = [ A + 0 ] \left[\begin{array}{ll} A & 0 \end{array}\right]^{+}=\left(\left[\begin{array}{ll} 1 & 0 \end{array}\right] \otimes A\right)^{+}=\left[\begin{array}{ll} 1 & 0 \end{array}\right]^{+} \otimes A^{+}=\left[\begin{array}{l} 1 \\ 0 \end{array}\right] \otimes A^{+}=\left[\begin{array}{c} A^{+} \\ 0 \end{array}\right] [A0]+=([10]A)+=[10]+A+=[10]A+=[A+0]
参考:
1、https://zhuanlan.zhihu.com/p/137468781
2、https://zhuanlan.zhihu.com/p/136911724
3、https://zhuanlan.zhihu.com/p/146683399
4、https://zhuanlan.zhihu.com/p/148258749?ivk_sa=1024320u
5、https://www.cnblogs.com/codeDog123/p/10238625.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NXU2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值