Abaqus有限元分析——有限元网格划分基本原则

个人专栏—ABAQUS专栏

  1. Abaqus2023的用法教程——与VS2022、oneAPI 2024子程序的关联方法 Abaqus2023的用法教程——与VS2022、oneAPI 2024子程序的关联方法
  2. Abaqus有限元分析——有限元网格划分基本原则 Abaqus有限元分析——有限元网格划分基本原则
  3. 各向同性线弹性材料本构模型umat的应用 各向同性线弹性材料本构模型umat的应用
  4. ABAQUS用户子程序二次开发——UMAT介绍(一) ABAQUS用户子程序二次开发——UMAT介绍(一)
  5. Fortran语法介绍(一) Fortran语法介绍(一)
  6. Fortran语法介绍(二) Fortran语法介绍(二)
  7. Fortran语法介绍(三) Fortran语法介绍(三)


有限元网格划分简介 \color{black}有限元网格划分简介 有限元网格划分简介

  • 有限元的基本思想是将结构离散化,利用简化几何单元近似逼近连续体,根据变形协调条件综合求解。 网格划分 \color{blue}网格划分 网格划分是进行有限元数值模拟分析至关重要的一步,它直接决定所生成的有限元模型的优劣,进而影响数值分析结果的精确性和经济性。

  • 网格的划分没有定式,只能根据经验划分网格。对有限元知识的深刻了解和丰富的经验式保证网格划分优劣的前提。

  • 网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格密度、单元编号及几何体素。

网格划分遵循的基本原则 \color{black}网格划分遵循的基本原则 网格划分遵循的基本原则

网格数量 \color{blue}网格数量 网格数量:

  • 网格数量直接影响计算精度和计算耗时,网格数量增加提高计算精度的同时会增加计算耗时。

  • 当网格数量较少时增加网格,计算精度可明显提高,计算时耗不会有明显增加;

  • 当网格数量增加到一定程度后,再继续增加网格时,精度提高程度减小,计算耗时大幅增加。

  • 在确定网格数量时应权衡两者因素的影响。具体应用时采用试算法,比较不同网格数量划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科研拓展人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值