CNN中的最大池化(MaxPool2D)的参数和含义,

同样的我们看看官方的文档,对于最大池化的函数定义:

tf.keras.layers.MaxPool2D(
    pool_size=(2, 2), strides=None, 
    padding='valid', data_format=None, **kwargs
)

这个函数给出了4个关键字参数,都是有 默认值的,这意味着你如果一个参数都不给,也是可以的。
pool_size = (2,2),池化核的尺寸,默认是2×2
strides = None,移动步长的意思 ,默认是池化核尺寸,即2,
padding = ‘valid’,是否填充,,默认是不填充
data_format = ‘channels_last’,输入数据的格式为(batch_size, pooled_rows, pooled_cols, channels))
0、当你使用tf.keras.layers.MaxPooling2D(),直接使用,结果如下 :
此时输出的output_shape = (input_shape - pool_size + 1) / strides

池化操作

1、首先看看第一个关键字参数,pool_size池化核的尺寸 例如,
pool_size = (3,3)
池化核的尺寸,可以一个数组或者元组,当 用 一个数字时,表示 width和height一样,最大池化后输出的尺寸大小公式为output_shape = (input_shape - pool_size + 1) / strides,下面例子中,input_shape = 6, pool_size = 3 ,strides =1 ,所以 output_shape = (6-3+1)/1 = 4,
pool_size

2 、 第二个参数 是strides,池化窗口的移动 步长,默认是None,并不是1的意思啊,默认是和pool_size保持一致,当然也可以赋值,此处是一个整型数值,比如strides = 3,

滑动步长

3 、 第三个参数是padding,填充,
此处有两个取值 padding = ‘valid’,有效的,
padding = ‘same’,相同的,
当取值valid时,表示边缘不填充, output_shape = (input_shape - pool_size + 1) / strides),向上取整
当取值‘same’时,表示边缘0填充, output_shape = input_shape / strides,向上取整
填充

4、数据格式,data_format,一个字符串,一个channels_last (默认)或channels_first 。在输入方面的排序。 channels_last对应于输入与形状(batch, height, width, channels)而channels_first对应于与形状输入(batch, channels, height, width) 。

输入输出形状
看似简单的一个函数,搞清楚其参数和用法,使用起来就不会有困惑的地方了。

### 平均池化与最大池化的定义 在卷积神经网络(CNN)中,池化操作用于减少特征图的空间尺寸并提取主要特征。两种常见的池化方法分别是平均池化最大池化。 - **最大池化**是指在一个指定窗口内取该区域的最大值作为输出[^1]。 - **平均池化**则是计算窗口内的所有元素的算术平均值来表示这个区域[^1]。 这两种方式都能有效地降低数据维度,但各自具有不同的特点,在实际应用中有各自的优劣之处。 ### 特征保留特性 对于图像处理而言: - 最大池化倾向于保持最显著的信息,即那些拥有最高激活度的位置会被优先考虑。这有助于捕捉到图片中最突出的部分,如边缘轮廓等重要视觉线索。 - 而平均池化则更加平滑地对待整个感受野范围的数据点,可以更好地反映局部区域内的一般性质,从而可能更有利于去除噪声干扰。 ### 应用场景分析 #### 最大池化适合的情况 当目标是对输入信号中的尖锐变化敏感时,例如检测物体边界或纹理细节,则应采用最大池化策略。因为这种类型的池化能够很好地强调重要的空间位置信息而不丢失其强度。 ```python import torch.nn as nn max_pool_layer = nn.MaxPool2d(kernel_size=2, stride=2) ``` #### 平均池化适用的情形 如果希望得到较为温的结果,并且想要抑制异常值的影响,那么可以选择平均池化。特别是在需要对背景或其他不规则分布的对象进行建模的时候,这种方法往往表现良好。 ```python avg_pool_layer = nn.AvgPool2d(kernel_size=2, stride=2) ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值