指数移动平均EWMA的alpha,halflife,com和span

pandas.DataFrame.emw是计算指数移动平均的函数。其中,衰减速度有alpha,halflife,com和span四种,本文对以上四种衰减速度的含义进行说明。 

3.5 Exponentially Weighted Windows — Pandas Doc

pandas.DataFrame.ewm — pandas 2.2.1 documentationicon-default.png?t=N7T8https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html#pandas.DataFrame.ewm

计算基础:等比数列(首项a_1,比例q,项数n)求和: 

S = \frac{a_1(1-q^n)}{1-q}

目录

指数移动平均基本计算公式和 alpha

迭代式

加权平均式

Halflife 半衰期

COM 质心

Span

指数移动平均基本计算公式和 alpha

「EMA系列之I」如何理解EMA指数移动平均值以及Python实现 - 知乎

Exponentially Weighted Moving Average (EWMA) - Formula, Applications

指数移动平均有迭代式和加权平均式两种。据pandas文档,emw函数的adjust设为True时,计算方法为加权平均式,否则为迭代式,默认为加权平均式。我们假设有个时间序列\{x_t\},\ t=0,1,2,\dots。与之对应,指数移动平均为 \{y_t\},\ t=0,1,2,\dots

迭代式

y_{t} = \alpha x_t+(1-\alpha)y_{t-1},\ \alpha\in[0,1]

\alpha的含义即为:在平均值中最近的数据占的权重。\alpha越大,则衰减越快,反之亦然

令 \beta = 1-\alpha,把

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值