ElasticSearch第一课-初步认识

本文介绍了ElasticSearch的基本概念,包括pandas的数据分析工具,以及ElasticSearch中的节点、集群、分片和副片的概念。文章强调了ElasticSearch在全文检索和高可用性、可扩展性方面的优势,并对比了与关系型数据库的差异。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


一、pandas是什么?

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

二、使用步骤

1.引入库

代码如下(示例):

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context = ssl._create_unverified_context

2.读入数据

代码如下(示例):

data = pd.read_csv(
    'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())

该处使用的url网络请求的数据。


总结

提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。


第一节

1)方便进行水平扩展

2)建议一些好的插件使用

第二节-开发知识

  1. 文档

  2. 元数据

1)index-文档所属的索引名
2)type-文档所属的类型名
3)id-文档的唯一ID
4)source-文档的原始json数据
5)all-整合所有字段到该字段,现已被废除
6)version-文档的版本信息
7)score-相关性打分

3.详细索引
索引的不同语意
1)名词:一个Elasticsearch集群中,可以创建很多个不同的索引
2)动词:保存一个文档到Elasticsearch的过程也叫索引
3)名词:创建一个倒排索引的过程
名词:一个B树索引,一个倒排索引

4.与关系型数据库的类比
在这里插入图片描述
Elasticsearch偏向于高性能全文检索/相关性
RDMS偏向于事务性/join

第三节-节点、集群、分片以及副片

1)高可用性
服务可用性-有节点停止服务,不影响全局
数据可用性-部分节点丢失,不会丢失数据

2)可扩展性
请求量提升/数据的不断增长


1.节点
节点是一个Elasticsearch的实例

2.keyword
text和keyword的区别
text:
会分词,然后进行索引
支持模糊、精确查询
不支持聚合

keyword:
不进行分词,直接索引
支持模糊、精确查询
支持聚合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhiguoXue_IT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值