提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。
一、pandas是什么?
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
二、使用步骤
1.引入库
代码如下(示例):
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
2.读入数据
代码如下(示例):
data = pd.read_csv(
'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())
该处使用的url网络请求的数据。
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
第一节
1)方便进行水平扩展
2)建议一些好的插件使用
第二节-开发知识
-
文档
-
元数据
1)index-文档所属的索引名
2)type-文档所属的类型名
3)id-文档的唯一ID
4)source-文档的原始json数据
5)all-整合所有字段到该字段,现已被废除
6)version-文档的版本信息
7)score-相关性打分
3.详细索引
索引的不同语意
1)名词:一个Elasticsearch集群中,可以创建很多个不同的索引
2)动词:保存一个文档到Elasticsearch的过程也叫索引
3)名词:创建一个倒排索引的过程
名词:一个B树索引,一个倒排索引
4.与关系型数据库的类比
Elasticsearch偏向于高性能全文检索/相关性
RDMS偏向于事务性/join
第三节-节点、集群、分片以及副片
1)高可用性
服务可用性-有节点停止服务,不影响全局
数据可用性-部分节点丢失,不会丢失数据
2)可扩展性
请求量提升/数据的不断增长
1.节点
节点是一个Elasticsearch的实例
2.keyword
text和keyword的区别
text:
会分词,然后进行索引
支持模糊、精确查询
不支持聚合
keyword:
不进行分词,直接索引
支持模糊、精确查询
支持聚合