论文阅读-Attention-based Transactional Context Embedding for Next-Item Recommendation

在电商环境中,推荐系统面临挑战,尤其是处理事务上下文。作者提出了注意力基交易上下文嵌入(ATEM)模型,考虑所有观察到的项目并根据相关性加权,以提高推荐准确性。ATEM模型使用注意力机制处理无序交易,优于传统方法,实验证实在准确性和新颖性上表现出色。
摘要由CSDN通过智能技术生成

Paper Reading —— Attention-based Transactional Context Embedding for Next-Item Recommendation

基于注意力的事务上下文嵌入下一项推荐

Abstract

在电商交易环境中向user推荐下一个item,这样的应用非常实用但是具有挑战性。Transactional context 是指在交易记录中的observed items。
大多数现有的推荐系统,主要是考虑recently occurring items 而不是 all the ones observed in the current context,这些算法通常假设交易中的items之间存在严格的顺序,但是这并不总是起作用,a long transaction(一个比较长的交易范围)通常包含许多对下一个选择的item没有关联或者说是没有用的item信息,这往往会overwhelm一些真正相关的item的影响。

举个栗子~
让我们举一个例子来说明上述问题。
用户首先将三个项目{milk,apple,orange}放入购物车中,
然后将{bread}添加到同一购物车中。
随后,交易被确定为{milk,apple,orange,bread}。
如果我们将前三个项目作为上下文而最后一个项目作为推荐的目标,
现有方法可能会建议{vegetables},如{green salad},
因为最近的上下文项目(orange和apple)。
但是,目标物品面包的选择可能取决于第一个项目(milk)。
在这种情况下,推荐系统应该更多地关注milk而不是orange和apple,
因为milk可能与下一个选择的bread更相关。
此示例显示了下一项建议的重要性,这可能会被交易中的无关项误导。
此外,真实世界的交易数据通常仅指示那些项目与项目之间的订单
(例如,项目时间戳)共同出现在交易中。
因此,推荐具有严格订单的交易项目可能是不可能和现实的。

作者提出一个推荐算法,这个算法不仅考虑当前交易中所有的observed items,而且还要用不同的relevance(相关性)对它们进行加权,以建立一个attentive context(注意力上下文),以高概率输出正确的下一个项目。模型——基于注意的事务嵌入模型(ATEM),用于上下文嵌入,以在不假定顺序的情况下对每个观察到的项目进行加权。对交易数据集的实证研究证明,ATEM在准确性和新颖性方面都显着优于最先进的方法。

Main Algorithm

问题描述与定义

推荐基于购物车序列( built onshoppingbasket-basedtransactiondata)

给定transactional dataset :

T={ t1,t2,...,t|T|} T = { t 1 , t 2 , . . . , t | T | }

给定每个transaction :

t={ i1,i
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值