用于无监督域自适应的域共享组-稀疏字典学习

这篇高级实训论文探讨了无监督域自适应中的域共享组稀疏字典学习方法,旨在对齐源域和目标域的条件分布和边缘分布。通过优化目标函数,包括条件分布对齐、边际分布对齐和联合分布对齐,实现源数据和未标记目标数据的联合分布对齐。该模型适用于处理数据集偏差问题,尤其是在跨域人脸识别任务中表现出色。
摘要由CSDN通过智能技术生成

高级实训论文阅读报告

Domain-Shared Group-Sparse Dictionary Learning for Unsupervised Domain Adaptation

1. Main Algorithm

给定一个源数据集合(source data) X S X^{S} XS和标签 y S y^{S} yS, 和一个没有标签数据的目标数据集合(target data) X T X^{T} XT目标是将联合分布 P S ( X S , y S ) P_{S}(X^{S},y^{S}) PS(XS,yS) P T ( X T , y T ) P_{T}(X^{T},y^{T}) PT(XT,yT)对齐以进行域适应。

具体而言,目标标签 y T y^{T} yT在无监督域适应中是未知的。为此,提出的DsGsDL模型学习组稀疏表示(group-sparse representations),其中条件分布(conditional distributions)和边缘分布(marginal distributions)在源域和目标域之间对齐。

Conditional Distribution Alignment

我们将条件分布与源域和目标域上的域共享组稀疏性约束对齐。我们首先考虑源域中的公式。

符号规定 source domain
记一个可以分成 K K K个类的labeled source data为 X S = [ X 1 S , X 2 S , . . . , X K S ] X^{S} = [X_{1}^{S},X_{2}^{S},...,X_{K}^{S}] XS=[X1S,X2S,...,XKS], 且 X k S ∈ R p × n k X_{k}^{S} \in \mathbb{R}^{p \times n_{k}} XkSRp×nk X S X^{S} XS的一个子集,分类为 k k k, p p p是每个样本的特征维度 , n k n_{k} nk是类标为 k k k的样本个数。

记源数据集的字典表示为 D S = [ D 1 S , D 2 S , . . . , D K S , D r S ] D^{S} = [D_{1}^{S},D_{2}^{S},...,D_{K}^{S},D_{r}^{S}] DS=[D1S,D2S,...,DKS,DrS],且 D k S ∈ R p × q k D_{k}^{S} \in \mathbb{R}^{p \times q_{k}} DkSRp×qk D S D^{S} DS的特定于类 k k k的子字典, D r S ∈ R p × q r D_{r}^{S} \in \mathbb{R}^{p \times q_{r}} DrSRp×qr是来自源域所有类的剩余(remainder)稀疏系数字典。
q k q_{k} qk q r q_{r} qr分别是 D k S D_{k}^{S} DkS D r S D_{r}^{S} DrS的数量。

α S ∈ R q × n \alpha^{S} \in \mathbb{R}^{q \times n} αSRq×n为源数据的系数。 q q q D S D^{S} DS的基数而 n n n是源数据的总数。

对应 D S D^{S} DS,源系数被划分为行向量的矩阵
α S = [ α 1 , : S ; α 2 , : S ; . . . ; α K , : S ; α r , : S ; ] \alpha^{S}=[\alpha_{1,:}^{S};\alpha_{2,:}^{S};...;\alpha_{K,:}^{S};\alpha_{r,:}^{S};] αS=[α1,:S;α2,:S;...;αK,:S;αr,:S;].

另一方面,系数矩阵可以根据标签 y S y^{S} yS由列向量写为
α S = [ α : , 1 S ; α : , 2 S ; . . . ; α : , K S ; ] \alpha^{S}=[\alpha_{:,1}^{S};\alpha_{:,2}^{S};...;\alpha_{:,K}^{S};] αS=[α:,1S;α:,2S;...;α:,KS;].

通过最小化每个子字典(sub-dictionary)的重建错误(reconstruction error) 并限制来自不同类的样本响应不同的子字典来获得 source-domain group sparsity。使用 l 0 l_{0} l0范数来进行group-sparseconstraint,学习 source group-sparse dictionary。

min ⁡ D S , α S ∑ k = 1 K ∣ ∣ X k S − D k S α k , k S − D r S α r , k S ∣ ∣ F 2 + η ∑ y i ≠ y j n ∣ ∣ α c , ( i ) S ∘ α c , ( j ) S ∣ ∣ 0 + λ ∑ i = 1 n ∣ α ( i ) S ∣ \min_{D^{S},\alpha^{S}}\sum_{k=1}^{K}||X_{k}^{S}-D_{k}^{S}\alpha_{k,k}^{S}-D_{r}^{S}\alpha_{r,k}^{S}||_{F}^{2} +\eta\sum_{y_{i} \neq y_{j}}^{n}||\alpha_{c,(i)}^{S} \circ \alpha_{c,(j)}^{S}||_{0} + \lambda\sum_{i=1}^{n}|\alpha_{(i)}^{S}| DS,αSmink=1KXkSDkSαk,kSDrSαr,kSF2+ηyi̸=yjnαc,(i)Sαc,(j)S0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值