【数学建模】线性规划模型基本原理与案例分享

1.1、线性规划问题

      在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G.B.Dantzig提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1.1 线性规划的实例与定义

例1.1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4千元与3千元。生产甲机床需用A、B机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用A、B、C三种机器加工,加工时间为每台各一小时。若每天
可用于加工的机器时数分别为A机器10小时、B机器8小时和C机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

上述问题的数学模型:设该厂生产x1台甲机床和x2台乙机床时总利润z最大,则x1 ,x2应满足:

变量x1,x2称之为决策变量,(1.1) 式被称为问题的目标函数,(1.2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

目标函数及约束条件均为线性函数,故被称为线性规划问题。线性规划问题是在-一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。在解决实际问题时,把问题归结成-一个线性规划数学模型是很重要的一步,往往也是很困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。
 

1.1.2 线性规划问题的解的概念

其中c和x为n维列向量,A、Aeq为适当维数的矩阵,b、beq为适当维数的列向量。【注意:matlab是求的min

可行解满足约束条件(1.4) 的解x= [x,L,x,I,称为线性规划问题的可行解,而使目标函数(1.3) 达到最大值的可行解叫最优解。
可行域所有可行解构成的集合称为问题的可行域,记为R。

1.1.3 线性规划的Matlab标准形式及软件求解

其中c和x为n维列向量,A、Aeq 为适当维数的矩阵,b、beq 为适当维数的列向量。

Matlab中求解线性规划的命令为

[x,fval] = linprog(c,A,b)
[x,fval] = linprog(c,A,b,Aeq,beq)
[x,fval] = linprog(c,A,b,Aeq,beq,lb,ub)

注意:这是三种不同的写法,对于标准形式,有哪个参数,就写哪个

其中x返回的是决策向量的取值,fval返回的是目标函数的最优值,c为价值向量,A,b对应的是线性不等式约束,Aeq,beq对应的是线性等式约束,lb和ub分别对应的是决策向量的下界向量和上界向量。

例1.2 求解下列线性规划问题

求解的matlab程序如下。

f=[-2;-3;5];
a=[-2,5,-1;1,3,1]; b=[-10;12]; .
aeq=[1,1,1];
beq=7;
[x,yl=linprog(f,a,b,aeq,beq,zeros(3,1));
x, y=-y

1.1.4 可以转化为线性规划的问题


1.2 投资的收益和风险

1.2.1 问题提出

1.2.2 符号规定和基本假设

符号规定
si表示第i种投资项目,如股票,债券等,i= 0,1,L ,n,其中s0指存入银行;
ri,Pi,qi分别表示si的平均收益率,交易费率,风险损失率,i= 0,L ,n,其中p0= 0, q0= 0;
ui表示si的交易定额,i= 1,L ,n;
xi表示投资项目si的资金,i= 0,1,L ,n;
a表示投资风险度;
Q表示总体收益;

基本假设
(1) 投资数额M相当大,为了便于计算,假设M= 1;
(2)投资越分散,总的风险越小;
(3)总体风险用投资项目s;中最大的一一个风险来度量;
(4) n+ 1种资产s;之间是相互独立的;
(5)在投资的这一时期内,r;,P;,q;为定值, 不受意外因素影响;
(6)净收益和总体风险只受r;,P;,9;影响,不受其它因素干扰。


1.2.3 模型的分析与建立


模型一:固定风险水平, 优化收益

也就是风险的水平不超过a

模型二:固定盈利水平,极小化风险

也就是最小受益为k

c)投资者在权衡资产风险和预期收益两方面时,希望选择一个令自己满意的投资组合。因此对风险、收益分别赋予权重s (0<s≤1 )和(1-s),s称为投资偏好系数。

 

1.2.4 模型一的求解

clc,clear
a=0;hold on
while a<0.05
    c=[-0.05,-0.27,-0.19,-0.185,-0.185];
    A=[zeros(4,1 ),diag([0.025,0.015,0.055,0.026])];
    b=a*ones(4,1);
    Aeq=[1,1.01,1.02,1 .045,1.065];
    beq=1; LB=zeros(5,1);,
    [x,Ql=linprog(c,A,b,Aeq,beq,LB);
    Q=-Q; plot(a,Q,'*k'); .
    a=a+0.001;
end
xlabel('a'),ylabel('Q')

1.2.5 结果分析

可以看出
(1) 风险大,收益也大
(2)当投资越分散时,投资者承担的风险越小,这与题意一致。冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资
(3)在a= 0.006附近有- -个转折点,在这一点左边,风险增加很少时,利润增长很快。在这- -点右边,风险增加很大时,利润增长很缓慢,所以对于风险和收益没有特殊偏好的投资者来说,应该选择曲线的转折点作为最优投资组合,大约是a= 0.6%,Q=20%,所对应投资方案为风险度a= 0.006,收益Q= 0.2019 ,x,= 0,x= 0.24,x,=0.4, X3= 0.1091, x4 = 0.2212.
 

学习来源:

https://www.bilibili.com/video/BV1kC4y1a7Ee?p=3

https://www.bilibili.com/video/BV1kC4y1a7Ee?p=4

### 回答1: 线性规划是一种常用于数学建模的方法,其主要目的是在给定约束条件下,寻求一组变量的最优解。线性规划的基本形式包括线性目标函数和线性约束条件,可以用数学公式表示如下: 最大化/最小化:c_1 x_1 + c_2 x_2 + ... + c_n x_n 约束条件: a_1 x_1 + a_2 x_2 + ... + a_n x_n <= b, 其中 x_1, x_2, ..., x_n 是未知变量,c_1, c_2, ..., c_n 和 a_1, a_2, ..., a_n 是给定的系数,b 是给定的常数。 线性规划案例非常多,广泛应用于经济学、工程学、运输等多个领域。举个例子: 1. 生产规划:工厂生产两种产品,受到生产设备、原料和人力的限制,要使生产的总收益最大化。 2. 资源配置:公司有多个项目,需要分配资源(如人力、资金等),使得总投资回报率最大化。 3. 运输问题:把货物从多个工厂运往多个客户,要满足需求量和运输限制,使运输成本最小化。 线性规划的数学模型通过计算机软件 ### 回答2: 线性规划是一种常见的数学建模方法,广泛应用于优化问题的求解。其基本思想是通过建立目标函数和约束条件,寻找最优解。线性规划的数学模型通常由以下几个要素组成:决策变量、目标函数和约束条件。 首先,决策变量是指需要决策或优化的变量,例如生产数量、投资金额等。其次,目标函数定义了优化问题的目标,包括最大化利润、最小化成本等。最后,约束条件是问题的限制条件,例如资源约束、技术限制等。 线性规划的一个典型案例是生产计划问题。假设某公司生产两种产品A和B,产品A每个单位的利润为10元,产品B每个单位的利润为15元。公司资源有限,每天可用的工时为60小时,A和B产品的生产分别需要2小时和3小时。另外,每天需求量不同,产品A的需求为5个单位,产品B的需求为8个单位。问如何安排生产计划,使得利润最大化? 针对该问题,可以建立如下线性规划模型:设x为生产产品A的单位数量,y为生产产品B的单位数量。则目标函数为最大化10x + 15y,约束条件为2x + 3y ≤ 60和x ≤ 5、y ≤ 8。根据这个模型,可以使用线性规划方法求解最优解。 通过求解得到的最优解是x = 5,y = 8,即应生产5个单位的产品A和8个单位的产品B,此时利润最大化为10*5 + 15*8 = 170元。 这个案例说明了线性规划在实际问题中的应用。通过建立数学模型,可以将实际问题转化为线性规划问题,并通过求解得到最优解,从而得到最佳的决策结果。线性规划的使用方法及案例不仅限于生产计划问题,也适用于其他方面的优化问题,如资源分配、输送问题等。 ### 回答3: 线性规划是一种数学建模方法,可以用于求解具有线性约束的优化问题。它的基本思想是找到一组决策变量的取值,使得目标函数的值最大(或最小),同时满足一系列线性等式或不等式约束条件。 线性规划可以应用于各种实际问题中。例如,在生产调度问题中,线性规划可用于决定每个生产批次所需要的资源,以最大化产出或最小化成本。在运输问题中,线性规划可用于确定不同仓库和客户之间的最佳运输方案,以最小化总运输成本。在市场营销中,线性规划可用于为产品定价,以最大化销售利润。 使用线性规划进行数学建模时,首先需要明确目标函数和约束条件。然后,将目标函数和约束条件转化为数学表达式,并确定决策变量的取值范围。接下来,使用线性规划求解方法(如单纯形法或内点法)找到最优解。最后,根据最优解进行决策,并对结果进行解释和验证。 线性规划的优点之一是它的数学模型相对简单,求解方法也比较成熟。它可以方便地应用于各种实际问题中,并且结果易于理解和解释。然而,线性规划也有一些限制,例如,它只适用于具有线性约束的问题,无法处理非线性约束或目标函数。 总体来说,线性规划数学建模中一种简洁、有效的方法。通过应用线性规划,可以帮助决策者在复杂的决策问题中寻找最优解,提高效率和经济性。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值