数学建模——线性规划

目录

基本概念

模型求解和应用

基于求解器的求解方法

基于问题的求解方法

其他 


基本概念

运筹学的一个重要分支是数学规划,线性规划是数学规划的一个重要的分支。

变量称为决策变量,规划的目标称为目标函数,限制条件称为约束条件,s.t.是“受约束于”的意思。

建立线性规划模型的一般步骤为:①分析问题,找出决策变量。②找出等式或不等式约束条件。③构造关于决策变量的一个线性函数。

线性规划模型的一般形式:

或:

c=[c_{1},c_{2},...,c_{n}]^{T}为目标函数的系数向量,又称为价值向量;x=[x_{1},x_{2},...,x_{n}]^{T}为决策向量;A=(a_{ij})_{m*n}为约束方程组的系数矩阵;b=[b_{1},b_{2},...,b_{m}]^{T}为约束方程组的常数向量。

还有标准型:

目标函数为极大型,约束条件为等式约束。满足约束条件的解为可行解,使目标函数达到最大值得可行解角叫最优解。所有可行解构成的集合叫做可行域,记为R。

在数学规划问题求解过程中,一定还要计算灵敏度分析。灵敏度分析指系统因周围条件变化显示出来的敏感程度的分析。线性规划问题的a、b、c都设定为常数,但是在实际过程中,这些系数都会有少许的变动。

模型求解和应用

MATLAB中求解数学规划的问题有两种模式:基于求解器的求解方法基于问题的求解方法

基于求解器的求解方法

需要将线性规划化为标准形式:

要求目标函数必须是最小化,约束条件分为小于等于约束和等号约束,lb和ub是决策变量上下界。

MATLAB函数调用格式为:

[x,fval] = linprog(f,A,b)

[x,fval] = linprog(f,A,b,Aeq,beq)

[x,fval] = linprog(f,A,b,Aeq,beq,lb,ub)

x返回的是决策变量的取值,fval返回的是目标函数的最优值,f为价值向量,A,b对应的是线性不等式约束,Aeq和beq对应的是线性等式的约束,lb和ub分别对应决策向量的下界向量和上界向量。

这种方法只能应用于决策向量是一维的情况。

基于问题的求解方法

首先用变量和表达式构造优化问题,然后用solve函数求解,可以用doc optimproblem查看帮助。

①prob=optimproblem('ObjectiveSense','max');

ObjectiveSense可以是max和min,代表优化最大值还是最小值,默认是min

②定义f,A,b(同上,f可以定义为行向量,这样目标函数不同再转置)

③x=optimvar('x',2,1,'TYPE','integer','LowerBound',0,'UpperBound',inf);

第一个‘x’里面是变量名,列向量,后面是存在几行几列。

‘TYPE’,后面定义的是该函数所属类型,比如说integer整数型,double双精度型号

‘LowerBound'与'UpperBound'表示下界与上界所跟的0,inf分别是范围

④prob.Objective=f * x;%目标函数,目标函数需要得到一个标量数值,不是矩阵向量

⑤prob.Constraints.con=A*x<=b;%约束条件,只有一个约束,也可以不加.con,.con是标签,可以自己命名,多个约束条件时,必须标签不能一样。

⑥[sol fval flag out]=solve(prob);%fval是最优值,sol.x是决策变量的值,当多个决策变量时,可以sol.y,flag在线性规划中不用在意,在非线性规划中注意不能为负值。

例如:

 采用求解器求解:

clc,clear
f = [-2;-3;5];%转换为求最小
A = [-2,5,-1;1,3,1];
b = [-10;12];
Aeq = [1,1,1];
beq = [7];
lb = zeros(3,1);
[x,fval] = linprog(f,A,b,Aeq,beq,lb,[]);
x
-fval

x =

    6.4286
    0.5714
         0
ans =

   14.5714

采用基于问题的求解

clc,clear
prob=optimproblem('ObjectiveSense','max');
x=optimvar('x',3,'LowerBound',0);
prob.Objective=2*x(1) + 3*x(2) - 5*x(3);
prob.Constraints.con1=2*x(1) - 5*x(2) + x(3)>=10;
prob.Constraints.con2=x(1) + 3*x(2) + x(3)<=12;
prob.Constraints.con3=x(1) + x(2) + x(3)==7;
[sol fval flag out]=solve(prob);
sol.x
fval

ans =

    6.4286
    0.5714
         0
fval =

   14.5714

其他 

  • MATLAB中,加载现有的txt文件的矩阵时,若用load函数,则矩阵应每一行列数应该相等。如果缺少个别的数,可使用readmatrix函数。writematrix(a,'data.xlsx')可以写入Excel中。 
  • 矩阵索引a(1:end,1),end就自动是行的最后一列
  • sum(a,'all')表示矩阵a的所有元素求和
### 使用 Python cvxpy 进行数学建模和规划求解 #### 导入必要的库 为了使用 `cvxpy` 进行数学建模,首先需要导入所需的库。这通常包括 `cvxpy` 自身以及用于数值计算的 `numpy`。 ```python import cvxpy as cp import numpy as np ``` #### 定义决策变量 定义模型中的未知量即为决策变量。这些变量可以根据具体问题设置成连续型或离散型(整数)。例如: ```python c = np.loadtxt('data4_10.txt') x = cp.Variable((4, 5), integer=True) # 创建一个大小为 (4, 5),且取值范围限定为整数类型的矩阵作为决策变量[^3] ``` 这里创建了一个名为 `x` 的四维向量,其元素均为布尔类型(通过上下界限制实现),并指定了该变量应满足特定约束条件下的整数属性。 #### 构造目标函数 接下来要构建的是优化的目标表达式。对于最小化成本的问题来说,可以通过如下方式来设定目标函数: ```python obj = cp.Minimize(cp.sum(cp.multiply(c, x))) # 将成本系数与对应的决策变量相乘再累加起来形成总费用,并将其设为目标最小化的对象 ``` 这段代码实现了将给定的成本数组 `c` 中每一个位置上的权重同相应位置处的决策变量 `x` 值做乘法运算之后的结果汇总到一起构成最终待极小化的目标值。 #### 添加约束条件 除了明确指出希望达到什么样的最优点之外,还需要规定一些额外的要求使得解决方案更加贴近实际情况。比如在这个例子当中就加入了几个典型的不等式形式的边界控制措施: ```python cons = [ 0 <= x, x <= 1, cp.sum(x, axis=0) == 1, cp.sum(x, axis=1) <= 2 ] # 设置一系列关于决策变量 x 的线性不等式/方程组作为附加限制条款 ``` 上述列表包含了四个不同方面的规则:确保所有分配比例介于零至一之间;每一列仅有一个供应商被选中供应货物;每种商品最多由两个不同的仓库提供服务。 #### 解决方案实例化及求解过程 最后一步就是把之前准备好的各个组件组合在一起组成完整的凸优化问题结构体,并调用内置的方法去寻找符合条件的最佳配置方案。 ```python prob = cp.Problem(obj, cons) prob.solve(solver='GLPK_MI') # 实例化一个问题实体并将前面建立的对象传递进去完成初始化工作后执行具体的寻优操作 print('最优解为:\n', x.value) print('最优值为:', prob.value) ``` 此部分先建立了包含有既定目标函数和一组关联紧密的约束关系在内的整体框架,随后借助选定的具体算法引擎来进行实际计算得出结论。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值