数论部分
- 请找出1到100之间,既是3的倍数又是5的倍数的所有数。
- 一个两位数,十位数字与个位数字之和为12,这个两位数是多少?(列出所有可能)
- 找出所有满足条件的两位数:十位数字与个位数字的积等于20。
- 小明想了一个数,这个数加上17等于62,这个数是多少?
- 将数字1到9填入九个空格中,使得三个三位数的和为1000,请找出这三个数。 □□□+□□□+□□□=1000
- 一个三位数,百位、十位和个位的数字之和为25,这个三位数是多少?(列出所有可能)
- 找出所有能被11整除的三位数,其中百位、十位和个位上的数字都是奇数。
- 小红有若干个糖果,如果平均分给3个人,会剩2个;如果平均分给5个人,会剩4个;如果平均分给7个人,会剩6个。小红最少有多少个糖果?
- 一个三位数,如果将个位和百位的数字交换位置,得到的新数比原数大297,求原数。
- 找出1到1000中,所有可以表示为连续整数和的数。例如:15=7+8,10=1+2+3+4。
计算与运算
- 计算:25×32+25×68=?
- 填空:□×□×□×□=990,其中每个□代表1到9中的一个数字。
- 计算:1+2+3+...+98+99+100=?
- 求值:1×1+2×2+3×3+...+10×10=?
- 计算:1-2+3-4+5-6+...+99-100=?
- 有一个算式□÷□=□×□,其中每个□代表不同的个位数,求所有可能的解。
- 计算:1/2+1/4+1/8+1/16+1/32=?
- 填空:1□2□3□4的个位数是(),其中□表示运算符号"+"或"-"。
- 计算:8×12.5×0.125=?
- 求值:(1-1/2)(1-1/3)(1-1/4)...(1-1/100)=?
几何问题
- 一个正方形的周长是20厘米,它的面积是多少平方厘米?
- 一个长方形的长是8厘米,宽是5厘米。如果将它剪成两个完全相同的正方形,每个正方形的边长是多少厘米?
- 一个正三角形的周长是15厘米,它的每条边长是多少厘米?
- 一个长方形的周长是28厘米,面积是40平方厘米,求这个长方形的长和宽。
- 小明有一根20厘米长的铁丝,他要用这根铁丝围成一个长方形,使得长方形的面积最大。这个长方形的长和宽各是多少?
- 一个正方形的对角线长为10厘米,求这个正方形的边长。
- 一个圆的周长是31.4厘米,它的直径是多少厘米?(取π=3.14)
- 一个圆的面积是78.5平方厘米,求它的半径。(取π=3.14)
- 一个长方形的长比宽大4厘米,面积是45平方厘米,求这个长方形的长和宽。
- 一个正方形的边长增加2厘米后,它的面积增加了20平方厘米,求原正方形的边长。
分数与比例
- 小明做了30道题,做对了80%,他做对了多少道题?
- 一箱苹果,第一天卖出了全部的1/3,第二天卖出了剩余的1/4,还剩下40个,原来这箱苹果有多少个?
- 小红和小明一起做作业,小红做完所有作业需要3小时,小明需要2小时。如果他们一起做,需要多少小时才能完成?
- 一根绳子,第一次剪去它的1/3,第二次剪去剩下的1/4,第三次剪去剩下的1/5,还剩8米,原来这根绳子有多少米?
- 一个水池,有两个水龙头,一个注满水池需要6小时,另一个需要4小时。如果两个水龙头同时开,需要多少小时才能注满水池?
- 小明和小红一起工作,完成一项任务小明需要10天,小红需要15天。如果他们一起工作,需要多少天完成这项任务?
- 甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时5千米,乙的速度是每小时3千米。已知A、B两地相距24千米,问两人相遇时,甲走了多少千米?
- 一箱饮料,每瓶重600克,共24瓶,箱子重900克,这箱饮料连箱共重多少千克?
- 一种溶液中,水和盐的比例是9:1。现在再加入2千克的盐,使得水和盐的比例变为3:1,原来这种溶液有多少千克?
- 小明的年龄与小红的年龄比是3:4,四年后,他们的年龄比将是4:5,求小明和小红现在各多少岁?
应用题与实际问题
- 小明家到学校的距离是1.5千米,他上学的速度是每分钟60米,需要多少分钟才能到学校?
- 一辆汽车从甲地开往乙地,如果速度是每小时60千米,需要3.5小时;如果速度是每小时70千米,需要多少小时?
- 甲、乙两名工人合作,甲每小时加工8个零件,乙每小时加工6个零件,他们合作4小时共加工了56个零件。问其中有几小时甲没有工作?
- 一列火车长150米,以每秒20米的速度通过一座长180米的桥,需要多少秒才能完全通过这座桥?
- 一家商店第一天卖出一批货物的1/5,第二天卖出剩余的1/4,第三天卖出剩余的1/3,还剩40件,原来这批货物有多少件?
- 小明每天看15页书,看完一本书需要12天;小红每天看12页书,看完同一本书需要多少天?
- 一根绳子折成3段,可以组成一个三角形;如果折成4段,可以组成一个正方形。这根绳子至少有多少厘米长?
- 甲、乙两人分别从两地同时出发相向而行,3小时后相遇。如果甲的速度增加2千米/小时,乙的速度不变,则2小时后相遇。求两地之间的距离。
- 有一堆苹果,如果每人分9个,则最后剩8个;如果每人分7个,则最后剩6个;如果每人分6个,则最后剩5个。问这堆苹果最少有多少个?
- 一个长方形游泳池,长25米,宽10米,深2米。现在往里面注水,每分钟1.5立方米,需要多少分钟才能注满?
数列与规律
- 找出下面数列的规律,并写出下一个数:1, 4, 9, 16, 25, ...
- 计算:1+3+5+7+...+99=?
- 找出下面数列的规律,并写出下一个数:1, 1, 2, 3, 5, 8, 13, ...
- 找出下面数列的规律,并写出后三个数:3, 6, 11, 18, 27, ...
- 计算:1+2+4+8+16+...+512=?
- 找出规律填空:1, 3, 6, 10, 15, 21, ( )
- 计算:1×2+2×3+3×4+...+9×10=?
- 找出规律填空:2, 6, 12, 20, 30, ( )
- 计算:12+22+32+...+102=?
- 找出规律填空:1, 4, 9, 16, 25, 36, ( )
逻辑推理
- 小明说:"我比小红大2岁。"小红说:"3年后,小明的年龄是我的年龄的5/4。"问小明和小红现在各多少岁?
- 一个两位数,它的个位数字比十位数字大2,并且这个两位数等于它的数字之和的5倍。求这个两位数。
- 一个袋子里有红、白、蓝三种颜色的球,共10个,其中红球最多,蓝球最少。红球比白球多1个,白球比蓝球多1个,求三种颜色的球各有多少个?
- 小明说:"我想了一个数,这个数加上它的平方等于132。"求这个数。
- 甲、乙、丙三人年龄的和是80岁,甲比乙大5岁,比丙小10岁,求甲、乙、丙三人各多少岁?
- 一个三位数,十位上的数字等于百位上的数字与个位上的数字之和,并且这个三位数是37的倍数,求这个三位数。
- 有一块三角形场地,周长是100米,其中最长的一边比最短的一边长12米,中间的一边比最短的一边长8米,求三条边的长度。
- 一个四位数,它的千位数字与个位数字之和等于百位数字与十位数字之和,并且这个四位数能被3和4整除。如果它的千位是5,个位是1,求这个四位数。
- 妈妈买了一些苹果,她给了小明和小红一样多的苹果,还剩下5个。如果她给小明的苹果数量是小红的2倍,则会多出2个。妈妈买了多少个苹果?
- 一个长方形,长和宽都是整数厘米,周长是26厘米,面积是40平方厘米,求这个长方形的长和宽。
排列组合与概率
- 将6个不同的球放入3个不同的盒子中,要求每个盒子至少有一个球,有多少种不同的放法?
- 4个不同的数排成一排,有多少种不同的排列方式?
- 从1到9这9个数中,任取3个不同的数,有多少种不同的取法?
- 将8个不同的球分成两组,每组4个,有多少种不同的分法?
- 一个袋子里有3个红球和2个白球,随机取出2个球,取出的两个球都是红球的概率是多少?
- 在1到20这20个数中,随机选一个数,选到的数既是3的倍数又是4的倍数的概率是多少?
- 有4张卡片,分别写有数字1、2、3、4,将这4张卡片排成一个四位数,有多少个不同的四位数可以排出?
- 8个人围成一圈,有多少种不同的围法?(只考虑相对位置)
- 一个班有10名男生和15名女生,要选出3名男生和2名女生组成一个小组,有多少种不同的选法?
- 从1到10这10个数中,任取3个数的和大于15的概率是多少?
行程问题
- 小明从家步行到学校需要30分钟,如果他骑自行车,只需要10分钟。已知步行速度是4千米/小时,求骑自行车的速度是多少千米/小时?
- 甲、乙两地相距120千米,小明从甲地出发,以每小时4千米的速度步行前往乙地;同时,小红从乙地出发,以每小时5千米的速度步行前往甲地。问多少小时后两人相遇?在距离甲地多少千米处相遇?
- 甲、乙两人在环形跑道上跑步,甲每分钟跑250米,乙每分钟跑200米。如果他们从同一地点同时出发,同向而行,多少分钟后甲第一次追上乙?
- 一条河,宽200米,河水以每秒2米的速度流动。小明要从河的一岸的A点划船到对岸的正对面B点。如果小明划船的速度在静水中是每秒5米,他应该瞄准B点上游多少米处的C点划船,才能正好到达B点?
- 一艘船顺水航行需要3小时,逆水航行需要5小时,已知水流速度是2千米/小时,求船在静水中的速度是多少千米/小时?
- 甲从A地出发前往B地,速度为每小时5千米;同时乙从B地出发前往A地,速度为每小时3千米。已知A、B两地相距40千米,甲、乙相遇后,甲继续前进,到达B地后立即返回A地。问甲返回到A地时,乙离A地还有多少千米?
- 小明和小红分别从A、B两地同时出发相向而行,两小时后相遇。相遇后,小明继续前进,到达B地后立即返回,在距离B地15千米处与小红再次相遇。已知小明的速度是小红的3/2倍,求A、B两地之间的距离。
- 一个环形跑道长400米,甲、乙两人在跑道上跑步,甲每分钟跑300米,乙每分钟跑250米。如果他们从同一地点同时出发,反向而行,第一次相遇是在出发后多少秒?
- 小明和小红在操场上跑步,操场是一条长400米的环形跑道。小明每分钟跑250米,小红每分钟跑200米。他们从同一地点同时出发,同向而行,小明跑了5圈后停下来休息。问小红跑了多少圈后才能追上小明?
- 甲、乙两船在江上相距54千米,同时相向而行。已知逆水时,甲船每小时行6千米,乙船每小时行8千米;顺水时,甲船每小时行14千米,乙船每小时行16千米。问两船经过多少小时相遇?
智力与趣味问题
- 一个长方形被分成了6个完全相同的小正方形,这个长方形的周长是28厘米,求小正方形的边长。
- 一个袋子里有12个红球和8个白球,至少取出多少个球,才能保证取出的球中至少有5个红球?
- 小明选了5道题做,每道题的分值都是20分。如果得分不是0分就是20分,并且总分是60分,问他做对了哪几道题?(列出所有可能)
- 有6个人,其中有3人总是说真话,另外3人总是说假话。现在他们6人一起做如下陈述:"我左边的人是说谎者。"问:这6个人从左到右是真话者还是说谎者?
- 一个正方体的表面积是96平方厘米,它的体积是多少立方厘米?
- 将1到9这9个数字填入一个3×3的方格中,使得每行、每列和两条对角线上的3个数的和都相等,请给出一种填法。
- 有一个天平和一个重量为40克的砝码,如何用这个砝码称出物体的下列重量:40克、80克、120克、160克?
- 甲、乙、丙三人一起工作完成一项任务需要6天,甲、乙两人一起工作需要10天,乙、丙两人一起工作需要15天,问甲、丙两人一起工作需要多少天?
- 有7个硬币,其中有一个是假币,假币比真币轻。用天平最少称几次,就能找出这个假币?
- 一个正方形的四个角被切去,成为一个正八边形,如果正方形的边长是10厘米,求这个正八边形的周长。