对比A*算法和BFS算法解决八数码问题(C++)

代码实现参考博客:https://blog.csdn.net/lishang6257/article/details/79732420

 

一、A*算法

A*算法是一种启发式图搜索算法。对于通用图搜索过程进行如下限制,即为A*算法。

定义评估函数    f*(n)=g*(n)+h*(n)

其中,g*(n)表示从初始节点到当前节点的最短路径的代价,而对于同一问题h*(n)可以有多种设计方法,而不同的启发函数会对搜索的效率产生比较明显的影响。在本文中,对于常规A*算法使用不在目标位置的数码的数量作为h*(n)的定义方法。BFS(广度优先搜索方法)实际上是一种最差的A*算法,认为h*(n)=0。还可以以各个数码与目标位置距离的总和定义启发函数h*(n)。

二、八数码问题

在一个3*3的九宫格棋盘上,摆放有8个刻有数码1~8的将牌。棋盘中有一个空位没有放置将牌,可以通过将与空格相邻的将牌移动到空格上的方式改变八个将牌的位置和顺序。八数码问题就是要求给出将棋盘布局从初始状态转变为目标状态的步骤。(15数码、63数码问题等等都与此类似)

示例如下:

 

三、C++代码实现及详细注释

#include <iostream>
#include <vector>
#include <ctime>
#include <cstdlib>
#define maxState 10000
#define N 3
using namespace std;

bool isEqual(int a[N][N][maxState], int b[N][N], int n)
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            if (a[i][j][n] != b[i][j])
                return false;
        }
    }
    return true;
}

bool isEqual(int a[N][N], int b[N][N]) //检查两矩阵是否完全一致
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            if (a[i][j] != b[i][j])
                return false;
        }
    }
    return true;
}

int evalute(int state[N][N], int target[N][N]) //估价函数h-计算不在位的将牌个数
{
    int num = 0; //num表示当前矩阵state中不在目标位置上的将牌个数
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
            if (state[i][j] != target[i][j])
                num++; //统计num
    }
    return num; //返回估价
}

void findBrack(int a[N][N], int x, int y)
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            if (a[i][j] == 0)
            {
                x = i;
                y = j;
                return;
            }
        }
    }
}

bool move(int a[N][N], int b[N][N], int dir)
{
    //1 up 2 down 3 left 4 right
    int x = 0, y = 0;
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            b[i][j] = a[i][j]; //将原矩阵复制以进行移动操作
            if (a[i][j] == 0)
            {
                x = i;
                y = j; //标记空格位置
            }
        }
    }
    if (x == 0 && dir == 1)
        return false; //四条if语句排除四种不可能的移动方向
    if (x == N - 1 && dir == 2)
        return false; //返回false意指此种移动方式不可行,回到调用函数重新选择移动方向
    if (y == 0 && dir == 3)
        return false;
    if (y == N - 1 && dir == 4)
        return false;
    if (dir == 1) //按照传入的dir将空格往相应的方向移动
    {
        b[x - 1][y] = 0;
        b[x][y] = a[x - 1][y];
    }
    else if (dir == 2)
    {
        b[x + 1][y] = 0;
        b[x][y] = a[x + 1][y];
    }
    else if (dir == 3)
    {
        b[x][y - 1] = 0;
        b[x][y] = a[x][y - 1];
    }
    else if (dir == 4)
    {
        b[x][y + 1] = 0;
        b[x][y] = a[x][y + 1];
    }
    else
        return false;
    return true; //移动空格成功返回true
}

void statecpy(int a[N][N][maxState], int b[N][N], int n)
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            a[i][j][n] = b[i][j]; //将移动完的新矩阵复制到close表中,n可以表示第n步搜索结果
        }
    }
}

void getState(int a[N][N][maxState], int b[N][N], int n)
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            b[i][j] = a[i][j][n];
        }
    }
}

void statecpy(int a[N][N], int b[N][N])
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
            a[i][j] = b[i][j]; //复制当前矩阵start
    }
}
int checkAdd(int a[N][N][maxState], int b[N][N], int n)
{
    for (int i = 0; i < n; i++)
    {
        if (isEqual(a, b, i))
            return i; //若两矩阵相同则返回对应矩阵的编号
    }
    return -1;
}

int Astar(int a[N][N][maxState], int start[N][N], int target[N][N], int path[maxState])
{
    bool visited[maxState] = {false}; //true表示矩阵已被遍历
    int fitness[maxState] = {0};
    int passLen[maxState] = {0};
    int curpos[N][N];
    statecpy(curpos, start);
    int id = 0, Curid = 0;
    fitness[id] = evalute(curpos, target);
    statecpy(a, start, id++);
    while (!isEqual(curpos, target)) //只要当前矩阵序列curpos与目标矩阵target不相同即执行while循环
    {
        for (int i = 1; i < 5; i++) //向四周找方向
        {
            int tmp[N][N] = {0};
            if (move(curpos, tmp, i)) //依次按照上下左右顺序尝试移动空格
            {
                int state = checkAdd(a, tmp, id);
                if (state == -1) //不添加到close表中
                {
                    path[id] = Curid; //走到当前第id个节点实际已经走过的路径的花费
                    passLen[id] = passLen[Curid] + 1;
                    fitness[id] = evalute(tmp, target) + passLen[id]; //总花费估价
                    statecpy(a, tmp, id++);                           //将处理得到的新矩阵编号为id复制到open表中a中保存
                }
                else //添加到close表中
                {
                    int len = passLen[Curid] + 1, fit = evalute(tmp, target) + len; //修改估价函数
                    if (fit < fitness[state])
                    {
                        path[state] = Curid;
                        passLen[state] = len;
                        fitness[state] = fit;
                        visited[state] = false;
                    } //若所得结果小于预期花费则修改多余部分的估价值,并将未遍历过的矩阵标记为false
                }
            }
        }
        visited[Curid] = true; //第curid个矩阵已被遍历过

        int minCur = -1;
        for (int i = 0; i < id; i++) //从open表中(visited值为false)寻找总估价函数fitness值最小的矩阵作为下一个带搜索节点
            if (!visited[i] && (minCur == -1 || fitness[i] < fitness[minCur]))
                minCur = i;
        Curid = minCur;             //Curid现在表示被选作下一个扩展节点的矩阵的编号
        getState(a, curpos, Curid); //将被选中的矩阵复制给curpos
        if (id == maxState)
            return -1; //如果已经搜索节点数达到设定的maxState,则认为目标矩阵不可达,返回-1
    }
    return Curid; //已求得目标矩阵,返回最终矩阵的编号
}

int BFS(int a[N][N][maxState], int start[N][N], int target[N][N], int path[maxState])
{
    bool visited[maxState] = {false}; //true表示矩阵已被遍历
    int fitness[maxState] = {0};
    int passLen[maxState] = {0};
    int curpos[N][N];
    statecpy(curpos, start);
    int id = 0, Curid = 0;
    //fitness[id] = evalute(curpos, target);
    statecpy(a, start, id++);
    while (!isEqual(curpos, target)) //只要当前矩阵序列curpos与目标矩阵target不相同即执行while循环
    {
        for (int i = 1; i < 5; i++) //向四周找方向
        {
            int tmp[N][N] = {0};
            if (move(curpos, tmp, i)) //依次按照上下左右顺序尝试移动空格
            {
                int state = checkAdd(a, tmp, id);
                if (state == -1) //不添加到close表中
                {
                    path[id] = Curid; //走到当前第id个节点实际已经走过的路径的花费
                    passLen[id] = passLen[Curid] + 1;
                    fitness[id] = passLen[id]; //总花费估价
                    statecpy(a, tmp, id++);    //将处理得到的新矩阵编号为id复制到open表中a中保存
                }
                else //添加到close表中
                {
                    int len = passLen[Curid] + 1, fit = len; //修改估价函数
                    if (fit < fitness[state])
                    {
                        path[state] = Curid;
                        passLen[state] = len;
                        fitness[state] = fit;
                        visited[state] = false;
                    } //若所得结果小于预期花费则修改多余部分的估价值,并将未遍历过的矩阵标记为false
                }
            }
        }
        visited[Curid] = true; //第curid个矩阵已被遍历过

        int minCur = -1;
        for (int i = 0; i < id; i++) //从open表中(visited值为false)寻找总估价函数fitness值最小的矩阵作为下一个带搜索节点
            if (!visited[i] && (minCur == -1 || fitness[i] < fitness[minCur]))
                minCur = i;
        Curid = minCur;             //Curid现在表示被选作下一个扩展节点的矩阵的编号
        getState(a, curpos, Curid); //将被选中的矩阵复制给curpos
        if (id == maxState)
            return -1; //如果已经搜索节点数达到设定的maxState,则认为目标矩阵不可达,返回-1
    }
    return Curid; //已求得目标矩阵,返回最终矩阵的编号
}

void show(int a[N][N][maxState], int n)
{
    cout << "-------------------------------\n";
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            cout << a[i][j][n] << " ";
        }
        cout << endl;
    }
    cout << "-------------------------------\n";
}

int calDe(int a[N][N])
{
    int sum = 0;
    for (int i = 0; i < N * N; i++)
    {
        for (int j = i + 1; j < N * N; j++)
        {
            int m, n, c, d;
            m = i / N;
            n = i % N;
            c = j / N;
            d = j % N;
            if (a[c][d] == 0)
                continue;
            if (a[m][n] > a[c][d])
                sum++;
        }
    }
    return sum;
}

void autoGenerate(int a[N][N])
{
    int maxMove = 50;            //设置步数上限
    srand((unsigned)time(NULL)); //生成随机数种子
    int tmp[N][N];
    while (maxMove--)
    {                             //随机移动空格五十步可以保证初始状态的矩阵序列不相同
        int dir = rand() % 4 + 1; //dir取值范围1~4,代表空格移动的四个方向
        if (move(a, tmp, dir))
            statecpy(a, tmp); //打乱原目标矩阵的顺序以构造初始矩阵
    }
}

void results_op(int res, int path[maxState], int a[N][N][maxState])
{

    int shortest[maxState] = {0}, j = 0;
    while (res != 0)
    {
        shortest[j++] = res;
        res = path[res];
    }
    cout << "第 0 步" << endl;
    show(a, 0);
    for (int i = j - 1; i >= 0; i--)
    {
        cout << "第 " << j - i << " 步\n";
        show(a, shortest[i]);
    }
}

int main()
{
    int a[N][N][maxState] = {0};                   //存储每个节点矩阵,最多可存储maxState个
    int start[N][N] = {1, 2, 3, 8, 0, 4, 7, 6, 5}; //指明八个数码元素的值及目标状态(将空格值认为0,则实际上是九个数码)
    autoGenerate(start);                           //调用此函数随机打乱原矩阵顺序生成不确定的矩阵序列

    int target[N][N] = {1, 2, 3, 8, 0, 4, 7, 6, 5}; //目标矩阵序列

    int start_demo[N][N] = {0}, target_demo[N][N] = {0};
    statecpy(start_demo, start);
    statecpy(target_demo, target);

    if (!(calDe(start) % 2 == calDe(target) % 2))
    {
        cout << "在此初始状态及目标序列情况下,无解\n";

        system("pause");
        return 0;
    }

    int path[maxState] = {0};

    cout << "使用以不在目标位置的将牌个数的A*算法处理如下:" << endl;
    int res = Astar(a, start, target, path);
    if (res == -1)
    {   //认为目标矩阵不可达
        cout << "此次搜索已经搜索超过" << maxState << "个节点,认为目标矩阵不可达\n";

        system("pause");
        return 0;
    }
    results_op(res, path, a);

    //下面进行BFS搜索,因为需要借用path数组,所以将其初始化为全零数组
    for (int i = 0; i < maxState; i++)
    {
        path[0] = 0;
    }
    cout << "\n仅使用路径花费作为启发函数的A*算法(BFS)处理结果如下:" << endl;
    res = BFS(a, start_demo, target_demo, path);
    if (res == -1)
    {   //认为目标矩阵不可达
        cout << "此次搜索已经搜索超过" << maxState << "个节点,认为目标矩阵不可达\n";

        system("pause");
        exit(0);
    }
    results_op(res, path, a);

    cout << endl;
    system("pause");
    return 0;
}

实验结果对比

(因为矩阵的初始状态是随机生成的,所以下面放了两种情况,一种是两种算法都能在有限步数内到达目标状态的情形,另一种是碰巧BFS搜索节点数超过预设值而找不到解的情形) 

 

下面是A*算法能使用较少步骤找到解而BFS搜索节点数量超出预设值的情形

四、总结

此代码通过使用常规A*算法和BFS方法对初始状态相同的矩阵进行处理,对比发现常规BFS方法相比于A*算法更容易出现搜索节点数量过多的问题。对于启发函数的选取,启发性信息越强则搜索范围越小,需要遍历搜索的节点也越少,搜索效率会大大提高,但却不能保证一定能得到最优解;反之,启发性信息越弱,所需搜索的节点就越多,这样的搜索效率就会降低,但这样更可能保证获得最优解.

如果将h*(n)定义为当前节点中每个数码与其目标位置的距离总和,启发性效果会更好,所需搜索的节点数也会减少.

  • 3
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
A*算法求解八数码问题 1、A*算法基本思想: 1)建立一个队列,计算初始结点的估价函数f,并将初始结点入队,设置队列头和尾指针。 2)取出队列头(队列头指针所指)的结点,如果该结点是目标结点,则输出路径,程序结束。否则对结点进行扩展。 3)检查扩展出的新结点是否与队列中的结点重复,若与不能再扩展的结点重复(位于队列头指针之前),则将它抛弃;若新结点与待扩展的结点重复(位于队列头指针之后),则比较两个结点的估价函数中g的大小,保留较小g值的结点。跳至第五步。 4)如果扩展出的新结点与队列中的结点不重复,则按照它的估价函数f大小将它插入队列中的头结点后待扩展结点的适当位置,使它们按从小到大的顺序排列,最后更新队列尾指针。 5)如果队列头的结点还可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步。 2、程序运行基本环境: 源程序所使用编程语言:C# 编译环境:VS2010,.net framework 4.0 运行环境:.net framework 4.0 3、程序运行界面 可使用程序中的test来随机生成源状态与目标状态 此停顿过程中按Enter即可使程序开始运行W(n)部分; 此停顿部分按Enter后程序退出; 4、无解问题运行情况 这里源程序中是先计算源状态与目标状态的逆序对的奇偶性是否一致来判断是否有解的。下面是无解时的运行画面: 输入无解的一组源状态到目标状态,例如: 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 8 7 0 运行画面如下: 5、性能比较 对于任一给定可解初始状态,状态空间有9!/2=181440个状态;当采用不在位棋子数作为启发函数时,深度超过20时,算法求解速度较慢; 其中启发函数P(n)与W(n)的含义如下: P(n): 任意节点与目标结点之间的距离; W(n): 不在位的将牌数; 源状态 目标状态 P(n) 生成节点数 W(n) 生成节点数 P(n) 扩展节点数 W(n) 扩展节点数 2 8 3 1 6 4 7 0 5 1 2 3 8 0 4 7 6 5 11 13 5 6 1 2 3 8 0 4 7 6 5 0 1 3 8 2 4 7 6 5 6 6 2 2 4 8 2 5 1 6 7 0 3 7 4 2 8 5 6 1 3 0 41 79 22 46 6 2 5 8 7 0 3 1 4 0 3 6 7 1 8 4 5 2 359 10530 220 6769 7 6 3 1 0 4 8 5 2 2 8 7 1 3 4 6 5 0 486 8138 312 5295 下图是解决随机生成的100中状态中,P(n)生成函数的生成节点与扩展节点统计图: 由上图可知,P(n)作为启发函数,平均生成节点数大约在1000左右,平均扩展节点数大约在600左右; 下图是解决随机生成的100中状态中,W(n)生成函数的生成节点与扩展节点统计图: 由上图可知,W (n)作为启发函数,平均生成节点数大约在15000左右,是P(n)作为启发函数时的平均生成节点的15倍;W (n)作为启发函数,平均扩展节点数大约在10000左右,是P(n)作为启发函数时的平均扩展节点的15倍; 下图是解决随机生成的100中状态中,两个生成函数的生成节点与扩展节点统计图: 由上述图表可以看到,将P(n)作为启发函数比将W(n)作为启发函数时,生成节点数与扩展节点数更稳定,相比较来说,采用P(n)作为启发函数的性能比采用W(n)作为启发函数的性能好。 6、源代码说明 1)AStar-EightDigital-Statistics文件夹:用来随机生成100个状态,并对这100个状态分别用P(n)与W(n)分别作为启发函数算出生成节点以及扩展节点,以供生成图表使用;运行界面如下: 2)Test文件夹:将0-8这9个数字随机排序,用来随机生成源状态以及目标状态的;运行界面如下: 3)AStar-EightDigital文件夹:输入源状态和目标状态,程序搜索出P(n)与W(n)分别作为启发函数时的生成节点数以及扩展节点数,并给出从源状态到目标状态的移动步骤;运行界面如下: 提高了运行速度的几处编码思想: 1、 在维护open以及close列表的同时,也维护一个类型为hashtable的open以及close列表,主要用来提高判断当前节点是否在open列表以及close列表中出现时的性能; 2、 对于每个状态,按照从左到右,从上到下,依次将数字拼接起来,形成一个唯一标识identify,通过该标识,可以直接判断两个状态是否是同一个状态,而不需要循环判断每个位置上的数字是否相等 3、 在生成每个状态的唯一标识identify时,同时计算了该状态的空格所在位置,通过空格所在位置,可以直接判断能否进行上移、下移、左移、右移等动作; 4、 只计算初始节点的h值,其它生成的节点的h值是根据当前状态的h值、移动的操作等计算后得出的,规则如下: a) 采用W(n)这种方式,不在位置的将牌数,共有以下3中情况: i. 该数字原不在最终位置上,移动后,在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值-1 ii. 该数字原在最终位置上,移动后,不在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值 +1 iii. 该数字原不在最终位置上,移动后,还是不在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值 iv. 该数字原在最终位置上,移动后,还在其最终位置 这种情况不存在 b) 采用P(n)这种方式,节点与目标距离,可通过下面3步完成 i. 首先计算在原位置时,与目标位置的距离,命名为Distance1 ii. 移动后,计算当前位置与目标位置的距离,命名为Distance2 iii. 计算子节点的h值: 子节点的h值 = 父节点的h值- Distance1+ Distance2 5、 在任意状态中的每个数字和目标状态中同一数字的相对距离就有9*9种,可以先将这些相对距离算出来,用一个矩阵存储,这样只要知道两个状态中同一个数字的位置,就可查出它们的相对距离,也就是该数字的偏移距离;例如在一个状态中,数字8的位置是3,在另一状态中位置是7,那么从矩阵的3行7列可找到2,它就是8在两个状态中的偏移距离。
好的,我可以为您讲解一下如何用C++编写用深度优先算法和广度优先算法解决八数码问题八数码问题是一种经典的搜索问题,旨在找到一种移动拼图块的方式,以使得初始状态变为目标状态。其中,每个拼图块只能移动到空格上,而且只能沿横向或纵向移动。这个问题可以使用深度优先算法和广度优先算法进行解决。 首先,我们需要定义一个八数码状态的数据结构。一种常见的表示方式是使用一个一维数组来表示状态,其中0表示空格。例如,初始状态[1,2,3,4,0,5,6,7,8]可以表示为: ``` 1 2 3 4 5 6 7 8 ``` 接下来,我们可以使用一个搜索树来表示所有可能的状态。搜索树的根节点为初始状态,每个节点表示一个状态,其子节点是通过移动一块得到的所有可能状态。我们可以使用一个队列来实现广度优先算法,或使用递归函数来实现深度优先算法。 下面是一种使用广度优先算法解决八数码问题C++代码实现: ```c++ #include <iostream> #include <queue> #include <vector> using namespace std; const int N = 9; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, 1, 0, -1}; struct State { int a[N]; int pos; int steps; }; bool check(const State& s) { for (int i = 0; i < N; i++) { if (s.a[i] != i) return false; } return true; } void print(const State& s) { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { cout << s.a[i * 3 + j] << " "; } cout << endl; } cout << endl; } int bfs(const State& start) { queue<State> q; vector<State> vis; q.push(start); vis.push_back(start); while (!q.empty()) { State s = q.front(); q.pop(); if (check(s)) return s.steps; for (int i = 0; i < 4; i++) { int nx = s.pos / 3 + dx[i], ny = s.pos % 3 + dy[i]; if (nx < 0 || nx >= 3 || ny < 0 || ny >= 3) continue; State t = s; swap(t.a[s.pos], t.a[nx * 3 + ny]); t.pos = nx * 3 + ny; t.steps++; bool ok = true; for (int i = 0; i < vis.size(); i++) { if (vis[i].pos == t.pos && vis[i].a == t.a) { ok = false; break; } } if (ok) { q.push(t); vis.push_back(t); } } } return -1; } int main() { State start; for (int i = 0; i < N; i++) { cin >> start.a[i]; if (start.a[i] == 0) start.pos = i; } start.steps = 0; cout << bfs(start) << endl; return 0; } ``` 这个实现中,我们定义了一个State结构体来表示八数码状态,其中a数组存储状态,pos表示空格位置,steps表示移动步数。check函数用于判断是否到达目标状态,print函数用于输出状态。 在bfs函数中,我们使用一个队列q和一个vector vis来实现广度优先搜索。每次从队列中取出一个状态,尝试通过移动一块来得到所有可能的状态,然后将未访问过的状态加入队列中。如果已经访问过,则不再加入队列。 这个实现中,我们使用了一个check函数来判断是否到达目标状态,但实际上也可以在枚举状态时直接判断。另外,我们可以使用一个pre数组来记录状态的前驱节点,以便输出路径。 接下来,我们看一下如何使用深度优先算法解决八数码问题。这个实现中,我们使用了递归函数来实现深度优先搜索。 ```c++ #include <iostream> #include <stack> #include <vector> using namespace std; const int N = 9; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, 1, 0, -1}; struct State { int a[N]; int pos; int steps; }; bool check(const State& s) { for (int i = 0; i < N; i++) { if (s.a[i] != i) return false; } return true; } void print(const State& s) { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { cout << s.a[i * 3 + j] << " "; } cout << endl; } cout << endl; } bool dfs(const State& s, int depth, int limit, vector<State>& vis, stack<State>& path) { if (check(s)) { while (!path.empty()) { print(path.top()); path.pop(); } print(s); return true; } if (depth + s.steps > limit) return false; for (int i = 0; i < 4; i++) { int nx = s.pos / 3 + dx[i], ny = s.pos % 3 + dy[i]; if (nx < 0 || nx >= 3 || ny < 0 || ny >= 3) continue; State t = s; swap(t.a[s.pos], t.a[nx * 3 + ny]); t.pos = nx * 3 + ny; t.steps++; bool ok = true; for (int i = 0; i < vis.size(); i++) { if (vis[i].pos == t.pos && vis[i].a == t.a) { ok = false; break; } } if (ok) { vis.push_back(t); path.push(t); if (dfs(t, depth + 1, limit, vis, path)) return true; path.pop(); } } return false; } int iddfs(const State& start) { vector<State> vis; stack<State> path; for (int limit = 0; ; limit++) { vis.clear(); path.push(start); vis.push_back(start); if (dfs(start, 0, limit, vis, path)) return limit; path.pop(); } return -1; } int main() { State start; for (int i = 0; i < N; i++) { cin >> start.a[i]; if (start.a[i] == 0) start.pos = i; } start.steps = 0; cout << iddfs(start) << endl; return 0; } ``` 这个实现中,我们定义了一个dfs函数来实现深度优先搜索,并使用一个limit参数来控制搜索深度。在dfs函数中,我们首先判断当前状态是否为目标状态,如果是,则输出路径并返回true。否则,如果当前深度加上移动步数已经超过了限制,则返回false。然后,我们枚举所有可能的状态,并判断是否已经访问过,如果未访问过,则递归调用dfs函数。如果递归调用返回true,则表示已经找到了目标状态,否则需要弹出当前状态。 在iddfs函数中,我们使用一个循环来不断增加限制,直到找到目标状态或搜索到最大深度为止。 这个实现中,我们使用了一个vis数组来记录已经访问过的状态,以便避免重复访问。另外,我们使用了一个path栈来记录路径,以便输出路径。在输出路径时,我们可以从栈顶往栈底依次输出状态。 需要注意的是,八数码问题并不是所有情况下都有解的。如果初始状态与目标状态不可达,则算法会一直搜索下去,直到达到限制深度为止。因此,在实际应用中,需要对问题进行判断,以避免无谓的计算。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值