Math Learning 2.微分方程求解

微分方程的建立与求解

对于一个复杂系统,设激励信号 e ( t ) e(t) e(t),系统响应为 r ( t ) r(t) r(t),则可以用一个高阶微分方程表示:
C 0 d n d t n r ( t ) + C 1 d n − 1 d t n − 1 r ( t ) + ⋅ ⋅ ⋅ + C n − 1 d d t r ( t ) + C n r ( t ) = E 0 d m d t m r ( t ) + E 1 d m − 1 d t m − 1 r ( t ) + ⋅ ⋅ ⋅ + E m − 1 d d t r ( t ) + E m r ( t ) C_0\frac {d^n}{dt^n}r(t)+C_1\frac {d^{n-1}}{dt^{n-1}}r(t)+···+C_{n-1}\frac {d}{dt}r(t)+C_nr(t)=E_0\frac {d^m}{dt^m}r(t)+E_1\frac {d^{m-1}}{dt^{m-1}}r(t)+···+E_{m-1}\frac {d}{dt}r(t)+E_mr(t) C0dtndnr(t)+C1dtn1dn1r(t)++Cn1dtdr(t)+Cnr(t)=E0dtmdmr(t)+E1dtm1dm1r(t)++Em1dtdr(t)+Emr(t)
根据时域经典解法:微分方程的完全解由齐次解特解组成。

1. 齐次解:求解齐次方程:

C 0 d n d t n r ( t ) + C 1 d n − 1 d t n − 1 r ( t ) + ⋅ ⋅ ⋅ + C n − 1 d d t r ( t ) + C n r ( t ) = 0 C_0\frac {d^n}{dt^n}r(t)+C_1\frac {d^{n-1}}{dt^{n-1}}r(t)+···+C_{n-1}\frac {d}{dt}r(t)+C_nr(t)=0 C0dtndnr(t)+C1dtn1dn1r(t)++Cn1dtdr(t)+Cnr(t)=0
其中齐次解的形式是例如 A e α t Ae^{\alpha t} Aeαt函数的线性组合,令 r ( t ) = A e α t r(t)=Ae^{\alpha t} r(t)=Aeαt,经过化简得到微分方程的特征方程:
C 0 α n + C 1 α n − 1 + ⋅ ⋅ ⋅ + C n − 1 α + C n = 0 C_0\alpha ^n+C_1\alpha ^{n-1}+···+C_{n-1}\alpha +C_n=0 C0αn+C1αn1++Cn1α+Cn=0
对应的n个根 α 1 \alpha _{1} α1 α 2 \alpha _{2} α2,···, α n \alpha _{n} αn称为微分方程的特征根。

  • 无重根时,齐次解:
    r h ( t ) = A 1 e α 1 t + A 2 e α 2 t + ⋅ ⋅ ⋅ + A n e α n t = ∑ i = 1 n A i e α i t r_h(t)=A_1e^{\alpha _1t}+A_2e^{\alpha _2t}+···+A_ne^{\alpha _nt}=\sum_{i=1}^{n}A_ie^{\alpha _it} rh(t)=A1eα1t+A2eα2t++Aneαnt=i=1nAieαit
  • 有三重根时,三次微分方程的齐次解如下:
    r h ( t ) = ( A 1 + A 2 t + A 3 t 2 ) e α t + A 4 e α 2 t r_h(t)=(A_1+A_2t+A_3t^2)e^{\alpha t}+A_4e^{\alpha _2t} rh(t)=(A1+A2t+A3t2)eαt+A4eα2t
    形式如下:

特征方程特征根齐次解的形式
( α − α 1 ) ( α − α 2 ) = 0 (\alpha - \alpha _1)(\alpha - \alpha _2)=0 (αα1)(αα2)=0 α 1 = α 1 , α 2 = α 2 \alpha _1= \alpha _1, \alpha _2= \alpha _2 α1=α1,α2=α2 A 1 e α 1 t + A 2 e α 2 t A_1e^{\alpha _1t}+A_2e^{\alpha _2t} A1eα1t+A2eα2t
( α − α ) 3 = 0 (\alpha - \alpha )^3=0 (αα)3=0$\alpha = \alpha $ ( A 1 + A 2 t + A 3 t 2 ) e α t (A_1+A_2t+A_3t^2)e^{\alpha t} (A1+A2t+A3t2)eαt
( α − a − b j ) ( α − a + b j ) = 0 (\alpha - a-bj)(\alpha - a+bj)=0 (αabj)(αa+bj)=0 α 1 = a + b j , α 2 = a − b j \alpha _1=a+bj, \alpha _2=a-bj α1=a+bj,α2=abj e α t ( A 1 cos ⁡ b t + A 2 sin ⁡ b t ) e^{\alpha _t}(A_1 \cos bt+A_2 \sin bt) eαt(A1cosbt+A2sinbt)
2.求特解

特解 r p ( t ) r_p(t) rp(t)形式:

激励函数 e ( t ) e(t) e(t)响应函数 r ( t ) r(t) r(t)的特解
E E E(常数) B B B
t p t^p tp B 1 t p + ⋅ ⋅ ⋅ + B p t + B p + 1 B_1t^p+···+B_pt+B_{p+1} B1tp++Bpt+Bp+1
e α t e^{\alpha t} eαt B e α t Be^{\alpha t} Beαt
cos ⁡ ( ω t ) \cos (\omega t) cos(ωt) B 1 cos ⁡ ( ω t ) + B 2 sin ⁡ ( ω t ) B_1 \cos (\omega t)+ B_2 \sin(\omega t) B1cos(ωt)+B2sin(ωt)
sin ⁡ ( ω t ) \sin(\omega t) sin(ωt) B 1 cos ⁡ ( ω t ) + B 2 sin ⁡ ( ω t ) B_1 \cos (\omega t)+ B_2 \sin(\omega t) B1cos(ωt)+B2sin(ωt)

注: 如果所列特解与齐次解重合,则应在特解中倍乘$t$

3.借助初始条件确定系数

完全解:
r ( t ) = r h ( t ) + r p ( t ) r(t)=r_h(t)+r_p(t) r(t)=rh(t)+rp(t)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值