Weak adversarial networks for high-dimensional partial differential equations(WAN文献总结)

Weak adversarial networks for high-dimensional partial differential equations

截屏2024-04-16 19.29.42

本文讨论如上的文章。

由于基于有限差分和有限元的经典数值方法存在计算缓慢、不稳定和维数灾难的问题。同时因为有限元、有限差分网格点的数量相当于问题的维数d呈指数级快速增加,所以发展基于神经网络的方法。

首先考虑如下具有Dirichlet或者Neumann边界条件的二阶椭圆PDE:

截屏2024-04-16 19.48.08

其中:截屏2024-04-16 19.49.35

并且椭圆算子具有如下的强椭圆性:存在一个常数 θ > 0 \theta>0 θ>0,满足 ξ T A ( x ) ξ ≥ 0 \xi^TA(x)\xi\ge0 ξTA(x)ξ0对于所有的 ξ = ( ξ 1 , ⋯   , ξ d ) ∈ R d \xi=(\xi_1,\cdots,\xi_d)\in\mathbb{R}^d ξ=(ξ1,,ξd)Rd

同时我们也考虑求解如下涉及时间的PDE:截屏2024-04-16 19.54.23

如下将弱解和测试函数分别参数化为原始和对抗神经网络,并采用无监督的形式训练他们,同时在配置点求对应误差。这种方法不需要离散空间,在求解一般高维PDE时快速稳定。同时该方法完全无网格,可以应用于任意形状区域上的PDE.

让我们首先关注边值问题(1):

在方程(1)两端乘函数 ϕ ∈ H 0 1 ( Ω ; R ) \phi\in H_0^1(\Omega;\mathbb{R}) ϕH01(Ω;R),分部积分得到:截屏2024-04-16 20.06.19

PDE(3)的解就是(1)的弱解,(1)的解称为强解。强解存在的话弱解一定存在,并且两者一定会相等,但弱解存在的话强解不一定存在。

我们可以这么考虑弱解: A [ u ] : H 0 1 ( Ω ) → R \mathcal{A}[u]:H_0^1(\Omega)\rightarrow\mathbb{R} A[u]:H01(Ω)R作为一个泛函满足: A [ u ] ( ϕ ) : = < A [ u ] , ϕ > \mathcal{A}[u](\phi):=<\mathcal{A}[u],\phi> A[u](ϕ):=<A[u],ϕ>,就如(3)中定义的那样。那么泛函 A [ u ] \mathcal{A}[u] A[u]的范数即为(由 L 2 L^2 L2范数诱导):截屏2024-04-16 20.19.09

所以 u u u是(1)的弱解当且仅当 ∥ A [ u ] ∥ o p = 0 \Vert\mathcal{A}[u]\Vert_{op}=0 A[u]op=0并且满足边界条件 B [ u ] = 0 \mathcal{B}[u]=0 B[u]=0。当 ∥ A [ u ] ∥ o p ≥ 0 \Vert\mathcal{A}[u]\Vert_{op}\ge0 A[u]op0时,利用弱解,我们可以得到如下的等价推论:截屏2024-04-16 20.33.45

从而可以得到如下的定理:截屏2024-04-16 20.31.53

上述定理启发我们,为了得到(1)的弱解,我们可以寻找使得(5)达到最优值的最优解 u u u.

同时(5)启发我们寻找函数 u θ : R d → R u_\theta:\mathbb{R}^d\rightarrow \mathbb{R} uθ:RdR,使得 ∥ A [ u θ ] ∥ o p \Vert\mathcal{A}[u_\theta]\Vert_{op} A[uθ]op最小,其中 θ \theta θ是待学习的深度神经网络的参数;另一方面,测试函数 ϕ \phi ϕ是一个参数为 η \eta η的深度对抗网络,它通过最大化 < A [ u θ ] , ϕ η > <\mathcal{A}[u_\theta],\phi_\eta> <A[uθ],ϕη>的范数来达到和 u θ u_\theta uθ对抗的目的.

为了训练神经网络神经网络,我们首先需要构建关于 u θ u_\theta uθ ϕ η \phi_\eta ϕη的目标函数。考虑到对数函数是单调而且严格递增的,所以我们可以重新公式化(5)为:截屏2024-04-16 20.49.24

除此之外,弱解还需要满足(1)中的边界条件 B [ u ] = 0 \mathcal{B}[u]=0 B[u]=0,选取边界上 N b N_b Nb个配置点,那么Dirichlet边界条件可以刻画为:

截屏2024-04-16 20.51.54同样地,对于Neumann边界条件,可以同样处理.

那么总目标函数就是两个目标(6)和(7)的加权和,为此我们需要寻找一个鞍点来解决如下的这个极小极大问题.

截屏2024-04-16 20.54.27

对于给定的目标函数(8),网络训练的关键要素是 L ( θ , η ) L(\theta,\eta) L(θ,η)关于参数 θ , η \theta,\eta θ,η的梯度,那么 θ , η \theta,\eta θ,η可以通过梯度下降和上升来优化.

为了获得(8)中的 L i n t L_{int} Lint的梯度,我们首先令 < A [ u ] , ϕ > <\mathcal{A}[u],\phi> <A[u],ϕ>的被积函数是 I I I,那么可以知道对于二阶椭圆PDE方程(1), I I I的梯度即为:截屏2024-04-16 21.07.30

由此我们可以得到 L i n t L_{int} Lint的梯度:截屏2024-04-16 21.09.07

通过随机选取配置点的方法,可以将 ∇ θ L i n t \nabla_\theta L_{int} θLint离散。接下去可以应用交替更新来优化参数 θ \theta θ η \eta η.从而产生如下的算法,称为弱对抗网络(WAN):截屏2024-04-16 21.14.14

我们还可以把WAN扩展到求解具有时间导数的PDE,也即IBVP.如下有两种方法:一种是在时间上采用半离散化,并对每个 t n t_n tn,都是与时间无关的PDE,从而可以迭代求解 u ( x , t n ) u(x,t_n) u(x,tn),其中算法1可以直接作为求解的子程序;第二种方法是不用任何离散化操作,只是联合处理x和t,并考虑整个区域 Ω × [ 0 , T ] \Omega\times[0,T] Ω×[0,T]的弱解和测试函数.

1.我们首先将[0,T]划分为N等分,然后用有限差分中的CN格式对上面提到的方程(2)中的时间导数进行离散,得到:截屏2024-04-16 21.27.55

其中:截屏2024-04-16 21.28.05

更确切地说,我们以 u ( x , t 0 ) = u ( x , 0 ) = h ( x ) u(x,t_0)=u(x,0)=h(x) u(x,t0)=u(x,0)=h(x)开始,然后对于n=0,从(10)中求解得到 u ( x , t 1 ) u(x,t_1) u(x,t1),由于(10)是关于 u ( x , t 1 ) u(x,t_1) u(x,t1)的椭圆PDE,所以可以直接应用算法1,得到 u ( x , t 1 ) u(x,t_1) u(x,t1)作为输出的参数为 θ 1 \theta_1 θ1的参数化神经网络 u θ 1 ( x ) u_{\theta_1}(x) uθ1(x).类似的,我们可以得到 u ( x , t n ) = u θ n ( x ) u(x,t_n)=u_{\theta_n}(x) u(x,tn)=uθn(x).算法过程如下:截屏2024-04-16 21.37.59

2.第二种需要先得到(2)的弱公式(通过在(2)两边乘以检验函数),得到:截屏2024-04-17 10.32.00

之后我们仿照之前的做法,把弱解 u u u和测试函数 ϕ \phi ϕ参数化为深度神经网络 u θ u_\theta uθ ϕ η \phi_{\eta} ϕη: Ω × [ 0 , T ] → R \Omega\times[0,T]\rightarrow\mathbb{R} Ω×[0,T]R.同时它的目标函数是:截屏2024-04-17 10.35.11

其中:截屏2024-04-17 10.37.08

对应的算法如下:截屏2024-04-17 10.38.07

  • 45
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值