【行为异常检测-论文阅读笔记(1)】ABNORMAL EVENT DETECTION IN VIDEOS USING GENERATIVE ADVERSARIAL NET

本文介绍了一种利用条件生成对抗网络(cGANs)进行视频行为异常检测的方法。通过训练cGANs学习正常视频帧及其对应的光流图,当遇到异常帧时,由于模型无法有效重构异常区域,由此计算重建误差来检测异常。实验在UCSD数据集上取得了良好效果,但未在其他数据集上验证。该方法强化了对cGANs和基于重构的异常检测的理解。
摘要由CSDN通过智能技术生成

        最近准备对有关基于GAN的视频行为异常检测的一些论文进行详细阅读,顺便做个笔记~

        这篇文章是来自ICIP2017的文章,属于比较老的文章了。

        论文地址:https://arxiv.org/abs/1708.09644v1

        其是受到了图像转换的启发,通过比较原始帧与其optical-flow的转换差异来判断异常,也是属于重构这一方法下的,以及使用了两个CGAN。接下来就详细记录一下阅读该论文的笔记。

主要思路      

        该论文主要的思想是使用视频正常帧和相应的光流图对GAN进行训练,因为仅使用正常数据进行训练,所以生成器无法重构出异常事件。在测试的时候,将GAN重建的外观和运动进行比较,通过计算局部差异可以来检测异常及其所处的区域。

 学习正常行为

        学习正常行为的过程其实就是训练模型的过程。该论文主要采用的是两个CGANs作为其主要模型,其中设F_{t}为训练视频第t帧图片,O_{t}为相应的光流图。

        学习分为两个网络:N^{F\rightarrow O}N^{O\rightarrow F}。前者是输入视频帧图像生成对应的光流图,后者则是输入光流图生成其对应的视频帧。该两个网络都是条件GANs,其CGANs中的生成器(G)输入一张图像x以及噪声向量z(通过噪声分布Z中采集),输出一个与x相同维度但通道数不相同的光流图像p=F(x,z)。举个例子,在N^{F\rightarrow O}中,输入x来自于F_{t},并且p是其对应重构的光流图像y=O_{t}。对于鉴别器(D)来说,D输入(x,y)或者(x,p),输出为一个标量,代表了图像来属于真实数据的概率。

         训练G、D的损失函数主要包括两个:

\pounds _{L1}(x,y) = \left \| y-G(x,z)) \right \| _{1}

\pounds _{cGAN}(G,D) = \mathbb{E} _{(x,y)\epsilon \chi }[logD(x,y))]+\mathbb{E} _{x\epsilon {F_{t}} ,z\epsilon Z}[log(1-D(x,G(x,z))]

        第一个损失函数是重构损失,保证生成图的图像与真是图像尽可能的相似

        第二个损失函数则是训练GAN的损失函数

训练结束后,由于训练时是使用的正常行为的数据,所以其对正常行为有重构能力,但对

 异常不具备重构能力。所以当测试时遇到了异常的视频帧,其不能很好的重建异常区域,正是利用了这个“缺陷”,可以把异常及其所处的异常区域检测出来。

异常检测过程

        具体过程用上图来解释。

        在图1中的top过程中,输入了一张拥有异常事件的图像F(有小车行驶),在通过训练好的GANs中后,输出其对应的光流图P _{O}(注意,这里的GANs不是用来和输入图像F相似的图像,而是生成对应的光流图P _{O}),然后计算误差\Delta _{O} = O - P _{O}。真实光流图与重构光流图之间的差异无法通过训练好的G^{F\rightarrow O}重构,因此可以看到生成出来的P _{O}光流图中是没有小车的光流图像的。

        在Bottom,输入图像F对应的真实光流图O,再通过G^{O\rightarrow F}后,生成出来其对应的视频帧图像P _{F},然后将F和P _{F}经过CNN提取相关语义信息(这里作者使用的是在ImageNet中已经训练好的AlexNet的前五层卷积层作为语义提取器(不包括pooling))后做差异:\Delta _{S} = h(F) - h(P _{F}),然后对\Delta _{O}\Delta _{S}进行相应的归一化(这里省略这些细节),变成N _{O} (i,j)以及N _{S} (i,j),再将二者进行加权相加即可得到最后的异常热力图:A = N _{S} + \lambda N _{O},其中\lambda作者设置为2.结果如下:

 实验结果

 在UCSD表现得结果很好,ped1 97.4%、ped2 93.5%

个人收获

        最近的课题定为了行人异常行为检测,这应该算是特别偏向应用的领域了,这篇文章利用了cGANs对正常图像的重构来检测异常,算是比较主流的方法。但这篇文章只在UCSD上做了效果对比,UCSD数据集行人所占的比重很小,人与人之间也有足够的间隔,使用光流信息能够很好的区分每个行人。并且异常通常是比较明显的,比如骑自行车,汽车经过等。对于其他数据集作者没有公布其性能,可能也是因为结果不好吧。

        总得来说,算是复习了一下cGANs(前几天看GAN的时候正好看到了),以及基于重构的异常检测,可以加固对这方面的印象。下一篇论文准备阅读

Robust Anomaly Detection in Videos Using Multilevel Representations(MLAD网络)

这篇文章也是利用了两对cGANs,但引用了CAE来进行重构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值