NLP前沿] 使用Python实现情感分析:从文本中识别情感

72 篇文章 13 订阅 ¥59.90 ¥99.00
本文介绍了如何使用Python进行情感分析,涉及文本预处理、模型构建(如朴素贝叶斯分类器)、特征提取(词袋模型、TF-IDF)以及情感分析的应用。情感分析在社交媒体分析、舆情监测等领域有着广泛的应用。
摘要由CSDN通过智能技术生成

引言:
自然语言处理(NLP)是人工智能领域的一个重要研究方向,而情感分析是NLP的一个重要任务之一。情感分析旨在从文本中识别和理解情感和态度。本文将介绍如何使用Python和一些常见的NLP工具库来实现情感分析。

  1. 文本预处理
    在进行情感分析之前,我们需要对待分析的文本进行预处理。预处理步骤通常包括以下几个方面:

1.1 文本清洗
文本清洗主要是去除一些无用的字符,例如标点符号、数字和特殊符号等。可以使用正则表达式或者字符串处理函数来实现。

import re

def clean_text(text):
    # 去除标点符号
    text = re.sub(<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值