机器学习 logistic回归的多分类(手写代码实现) python

本文介绍了如何使用LogisticRegression进行多分类问题的处理,重点讲解了softmax激活函数的运用以及参数优化的方法,包括梯度下降法的实现。作者还提到了利用极大似然估计法估计模型参数的可能性,并强调了矩阵计算在机器学习中的重要性,尤其是在np库的支持下。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

1.按课本所说,二分类可以使用sigmoid,softmax作为激活函数,扩展成多分类的情况

2.为了优化logistic回归模型的参数k和b,我采用梯度下降法(涉及学习率和迭代次数),该部分算法参考了网上的一些示例代码。

# 引用库,numpy库用于矩阵计算,sklearn库用于获取鸢尾花数据集,数据集划分
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
"""""
用于多分类的激活函数:softmax函数(将输入向量中的每个元素映射为一个处于 (0, 1) 之间的实数,并且所有元素的和等于 1。)
将一组实数转化为表示概率的值。
若是二分类,可考虑sigmoid函数
"""
def softmax(X):
    exps = np.exp(X - np.max(X)) # 第一步:将输入全部指数化(减去其中最大值,避免数据溢出)
    return exps / np.sum(exps, axis=1, keepdims=True) # 第二步:将每一行的每个元素除该行的和(保持原形状不变)

class LogisticRegression:
    # 模型参数,权值k,偏b,学习率(默认0.01,用于梯度下降),迭代次数(默认1000次)
    def __init__(self, learning_rate=0.01, num_iterations=1000):
        self.learning_rate = learning_rate
        self.num_iterations = num_iterations
        self.k = None
        self.b = None

    # 训练模型
    def fit(self, X, y):
        # 获取 样本数,特征数,类别数
        num_samples, num_features = X.shape
        num_classes = len(np.unique(y))

        # 初始化 权值k and 偏置b
        # k的形状(num_features*num_classes)
        # b的形状 (1*num_classes)
        self.k = np.zeros((num_features, num_classes))
        self.b = np.zeros(num_classes)

        # 梯度下降法,迭代1000次,优化模型参数
        for _ in range(self.num_iterations):

            # linear_model的形状是(num_samples*num_classes) 线性变换
            linear_model = np.dot(X, self.k) + self.b

            # 进softmax函数进行映射,得到该sample属于不同class的概率
            y_pred = softmax(linear_model)

            # error[i, j] 表示第 i 个样本在第 j 个类别上的误差值。
            # error 形状 (num_samples, num_classes)
            error = y_pred - np.eye(num_classes)[y]

            # 计算梯度
            dk= (1 / num_samples) * np.dot(X.T, error)
            db = (1 / num_samples) * np.sum(error, axis=0)

            # 更新参数
            self.k -= self.learning_rate * dk
            self.b -= self.learning_rate * db

    # 计算某sample属于个class的概率
    def predict_prob(self, X):
        linear_model = np.dot(X, self.k) + self.b
        y_pred = softmax(linear_model)
        return y_pred

    # 返回所有测试sample的预测类型
    def predict(self, X):
        y_pred_prob = self.predict_prob(X)
        y_pred = np.argmax(y_pred_prob, axis=1)
        return y_pred

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=215275)

# 创建并训练 Logistic 回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 在测试集上进行预测
predictions = model.predict(X_test)

# 打印预测结果 and 计算准确率
accuracy = 0
for i in range(len(predictions)):
    if predictions[i] == y_test[i]:
        accuracy += 1
    print(f"测试样本 {X_test[i]} 预测类别为: {predictions[i]} 实际类别为: {y_test[i]}")
print(f"模型的权重为:{model.k},模型的偏置为:{model.b}")
print(f"accuracy:{(accuracy/len(predictions)*100)}%")

心得:

1.logistic回归完成多分类的问题,对于模型参数的估计其实也可以直接根据训练集用极大似然估计法来估计模型参数,这样可能还比较简单。我的代码是直接对参数初始化,然后开始梯度下降法不断迭代,来更新模型。

2.要完成该算法,有一步很重要,就是要确定激活函数(个人理解:概率模型中激活函数就是在把某一个sample的各个特征的输入,转化为该sample对属于各个class的概率,从而赋予非线性的属性)。多分类,注意累加,softmax激活函数的实现也参考了部分网络资料。

3.鸢尾花数据具有线性可分性质,同样可以在此作为logistic回归多分类的测试数据。

4.通过这个代码的编写,深刻认识到np库对于矩阵数值计算提供了极大的便利,机器学习的许多算法,离不开大量的矩阵计算,调用np库来辅助计算,一个是代码看起来更加简洁,二是使代码执行效率更高。(常用的np库的函数还是需要记住的)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值