统计学-点估计及其性质


点估计

如求一个城市所有人的平均身高:

城市.所有人–>总体

城市.所有人.平均身高–>总体的参数(θ)

城市.所有人.平均身高估计值–>总体的估计参数( θ ^ \hat{θ} θ^)

此时我们想得到θ,需要将整个城市所有人的身高全部测量,然后才能计算出平均身高θ,但这是不可能的,因此我们采取随机抽样来获得近似值,用样本来进行估计


此时,我们设:

城市所有人的平均身高为:μ
样本1000人的平均身高为: μ ^ \hat{μ} μ^

由于每次抽取的样本1000人都不同,所以每次得到的 μ ^ \hat{μ} μ^值也不相同,因此我们可以称 μ ^ \hat{μ} μ^为一个随机变量。

此时,估计一个总体参数的某个值,叫做点估计。


区间估计

不同于点估计,有时我们估计的值是一个区间,比如看见一个人以后,估计他是二三十岁,即此人年龄是20-30岁之间,就属于一个区间估计。差值越小,精度越高。

依旧以上面城市人口的身高为例:

抽样后会得到不同的区间精度:

不同的抽样方法->方法科学,精度变高
不同的样本范围->范围变大,精度变高

对应点估计,区间估计是一对随机变量


无偏估计

如何确定估计方法的好坏,此时引入一个概念叫无偏unbiased

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律表明,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。

无偏:E( θ ^ \hat{θ} θ^)估计量的期望总体的参数

有偏:不符合这个要求则称为有偏

偏(Bias):b(θ)=E( θ ^ \hat{θ} θ^)-θ

当出现多个无偏估计量时,如何评估那一个最好呢。


最小方差无偏估计量MVUE

即 谁的方差最小,那就谁最好。

方差可以来衡量数据波动的大小,对于多个无偏估计量,则可以采用最小方差无偏估计量来衡量,离散程度越小越接近θ

那么,无偏估计量一定优于有偏估计量吗?

图中:
μ B μ_B μB=θ,—>f(B)为无偏
μ A μ_A μA≠θ,—>f(A)为有偏。

μ A μ_A μA相对于θ取值区间< μ B μ_B μB相对于θ取值区间(图像横轴的区间范围)
所以并非无偏估计量一定优于有偏估计量。
这个原理引用一个内容:取均方误差最小的估计量

Mean squared error for θ ^ \hat{θ} θ^:
E[ ( θ ^ − θ ) 2 (\hat{θ}-θ)^2 (θ^θ)2]

E[ ( θ ^ − θ ) 2 (\hat{θ}-θ)^2 (θ^θ)2]–化简–>V( θ ^ \hat{θ} θ^)+ b 2 ( θ ) b^2(θ) b2(θ)

该公式也可以用于对比两个无偏估计量:

依上文,若为两无偏估计量,则 b 2 ( θ ) b^2(θ) b2(θ)=0;
则E[ ( θ ^ − θ ) 2 (\hat{θ}-θ)^2 (θ^θ)2]=V( θ ^ \hat{θ} θ^),即对比方差较小的值即可

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值