06.第三章 点估计(1)

第三章 点估计(1)

1.点估计的基本属性

点估计: X = ( X 1 , ⋯   , X n ) \boldsymbol X=(X_1,\cdots,X_n) X=(X1,,Xn)作为某个总体的样本, g ^ ( X 1 , ⋯   , X n ) \hat g(X_1,\cdots,X_n) g^(X1,,Xn)是样本的函数,用 g ^ ( X ) \hat g(\boldsymbol X) g^(X)的值作为 g ( θ ) g(\theta) g(θ)的估计,称为点估计。简单来说,就是用某种函数来处理一个样本,得到的数据作为某个参数的函数的估计值。

采取不同的函数对某参数进行点估计,估计的效果不同,一般用来评价点估计的好坏有一些标准。以下用 g ^ ( X ) \hat g(X) g^(X) g ^ n ( X ) \hat g_n(X) g^n(X)表示同一点估计, n n n为样本容量。

  • 无偏性:无偏的点估计期望等于参数值,即是否有
    E θ ( g ^ ( X ) ) = g ( θ ) . E_\theta(\hat g(X))=g(\theta). Eθ(g^(X))=g(θ).
    如果上式成立,则称 g ^ ( X ) \hat g(X) g^(X) g ( θ ) g(\theta) g(θ)的一个无偏估计。无偏性意味着用这种方法估计参数没有系统偏差,但具有随机误差(且大小不定),在只有少次数使用时效果微乎其微,需要多次重复使用才能接近真值。

  • 渐进无偏性:如果 E θ ( g ^ ( X ) ) ≠ g ( θ ) E_\theta(\hat g(X))\ne g(\theta) Eθ(g^(X))=g(θ),但
    lim ⁡ n → ∞ E ^ ( g n ( X ) ) = g ( θ ) \lim_{n\to \infty }\hat E(g_n(X))=g(\theta) nlimE^(gn(X))=g(θ)
    则称 g ^ n ( X ) \hat g_n(X) g^n(X)是渐进无偏估计(具有渐进无偏性)。

  • 有效性:有效性是针对无偏估计而言的,要比较两个无偏估计的好坏,显然方差越小越好,所以设 g ^ 1 ( X ) , g ^ 2 ( X ) \hat g_1(X),\hat g_2(X) g^1(X),g^2(X) g ( θ ) g(\theta) g(θ)的两个无偏估计量,如果
    D θ ( g ^ 1 ( X ) ) ≤ D θ ( g ^ 2 ( X ) ) , ∀ θ ∈ Θ ∃ θ 0 , s . t . D θ 0 ( g ^ 1 ( X ) ) < D θ 0 ( g ^ 2 ( X ) ) D_\theta(\hat g_1(X))\le D_\theta (\hat g_2(X)),\forall \theta \in \Theta\\ \exist \theta_0,s.t. D_{\theta_0}(\hat g_1(X))<D_{\theta_0}(\hat g_2(X)) Dθ(g^1(X))Dθ(g^2(X)),θΘθ0,s.t.Dθ0(g^1(X))<Dθ0(g^2(X))
    则称 g ^ 1 ( X ) \hat g_1(X) g^1(X)是更有效的无偏估计。

  • 相合性:我们希望点估计量能够随着样本容量的增加,与被估计参数的偏差越来越小,因此提出相合这一判断依据。这里有几种相合性:

    • 弱相合估计: g ^ n ( X ) \hat g_n(X) g^n(X)依概率收敛到 g ( θ ) g(\theta) g(θ),即 ∀ θ ∈ Θ , ε > 0 \forall \theta\in\Theta,\varepsilon>0 θΘ,ε>0
      lim ⁡ n → ∞ P θ ( ∣ g ^ n ( X ) − g ( θ ) ∣ ≥ ε ) = 0 \lim_{n\to \infty}\mathbf P_\theta(|\hat g_n(X)-g(\theta)|\geq \varepsilon)=0 nlimPθ(g^n(X)g(θ)ε)=0
      这常用到切比雪夫不等式,即
      P ( ∣ ξ − E ξ ∣ ≥ ε ) ≤ D ξ ε 2 \mathbf P(|\xi-E\xi|\geq\varepsilon)\leq\frac{D\xi}{\varepsilon^2} P(ξEξε)ε2Dξ

    • 强相合估计:对 ∀ θ ∈ Θ \forall \theta\in \Theta θΘ
      P θ ( lim ⁡ n → ∞ g ^ n ( X ) = g ( θ ) ) = 1 \mathbf P_\theta(\lim_{n\to\infty}\hat g_n(X)=g(\theta))=1 Pθ(nlimg^n(X)=g(θ))=1
      这常用到柯尔莫哥洛夫强大数定律,即对于一列独立同分布随机变量序列 { ξ n } , E ∣ ξ i ∣ < ∞ , E ξ i = μ \{\xi_n\},E|\xi_i|<\infty,E\xi_i=\mu {ξn},Eξi<,Eξi=μ,则有
      1 n ∑ i = 1 n ξ i → μ  a.s. \frac{1}{n}\sum_{i=1}^n\xi_i\to\mu\text{ a.s.} n1i=1nξiμ a.s.
      对于连续函数 f f f,若 ξ n → a  a.s. \xi_n\rightarrow a\text{ a.s.} ξna a.s.,则有 f ( ξ n ) → f ( a )  a.s. f(\xi_n)\rightarrow f(a)\text{ a.s.} f(ξn)f(a) a.s.

    • r r r阶矩相合估计:对 r > 0 , ∀ θ ∈ Θ r>0,\forall\theta\in\Theta r>0,θΘ
      lim ⁡ n → ∞ E θ ∣ g ^ n ( X ) − g ( θ ) ∣ r = 0 \lim_{n\to\infty}E_\theta|\hat g_n(X)-g(\theta)|^r=0 nlimEθg^n(X)g(θ)r=0
      则称为 r r r阶矩相合估计,当 r = 2 r=2 r=2时称为均方相合估计。

2.矩估计法

样本矩:分为原点矩与中心矩。样本的 k k k阶原点矩为 a n , k = 1 n ∑ i = 1 n X i k a_{n,k}=\frac1n\sum_{i=1}^n X_i^k an,k=n1i=1nXik,样本的 k k k阶中心矩为 m n , k = 1 n ∑ i = 1 n ( X i − X ˉ ) k m_{n,k}=\frac1n\sum_{i=1}^n (X_i-\bar X)^k mn,k=n1i=1n(XiXˉ)k。它们是总体原点矩 α k \alpha_k αk与中心矩 μ k \mu_k μk的“自然”估计量,并且 a n , k a_{n,k} an,k是总体原点矩 α k \alpha_k αk的无偏估计。

矩估计量:对于分布族 { f ( x , θ ) , θ ∈ Θ } \{f(x,\theta),\theta\in\Theta\} {f(x,θ),θΘ},关于 θ \theta θ的函数 g ( θ ) g(\theta) g(θ)可以表示为总体分布的某些矩的函数 g ( θ ) = G ( α 1 , ⋯   , α k , μ 2   ⋯   , μ s ) g(\theta)=G(\alpha_1,\cdots,\alpha_k,\mu_2\,\cdots,\mu_s) g(θ)=G(α1,,αk,μ2,μs)。将总体矩自然地换成样本矩,就得到了矩估计量
g ^ ( X ) = G ( a n , 1 , ⋯   , a n , k , m n , 2 , ⋯   , m n , s ) \hat g(\boldsymbol X)=G(a_{n,1},\cdots,a_{n,k},m_{n,2},\cdots,m_{n,s}) g^(X)=G(an,1,,an,k,mn,2,,mn,s)
这种求矩估计量的方法叫做矩法求点估计。

矩估计量的性质:

  • 无偏性方面,一般 a n , k a_{n,k} an,k α k \alpha_k αk的无偏估计, m n , k m_{n,k} mn,k不是 μ k \mu_k μk的无偏估计。由此,待估参数 g ( θ ) g(\theta) g(θ)为矩的一般函数时,矩估计量一般不具有无偏性;但是,如果 g ( θ ) g(\theta) g(θ)是若干总体原点矩的线性组合,则显然矩估计量具有无偏性。
  • 渐进无偏性方面,矩估计量一般具有渐进无偏性。
  • 相合性方面, a n , k a_{n,k} an,k α k \alpha_k αk的强相合估计,由柯尔莫哥洛夫强大数定律保证; m n , k m_{n,k} mn,k μ k \mu_k μk的强相合估计。对于 g ( θ ) = G ( α 1 , ⋯   , α k , μ 2 , ⋯   , μ s ) g(\theta) =G(\alpha_1,\cdots,\alpha_k,\mu_2,\cdots,\mu_s) g(θ)=G(α1,,αk,μ2,,μs),且 G G G是其变元的连续函数,则 g ^ n ( X ) \hat g_n(X) g^n(X) g ( θ ) g(\theta) g(θ)的强相合估计。
  • 渐近正态性:矩估计是相合渐进正态估计。

相合渐进正态估计(CAN估计): g ^ n ( X ) \hat g_n(X) g^n(X) g ( θ ) g(\theta) g(θ)矩估计量,如果存在与样本大小有关的定义在参数空间上的函数 A n ( θ ) , B n ( θ ) A_n(\theta),B_n(\theta) An(θ),Bn(θ),使得
g ^ n ( X ) − A n ( θ ) B n ( θ ) ⟶ L N ( 0 , 1 ) \frac{\hat g_n(X)-A_n(\theta)}{B_n(\theta)}\stackrel{\mathscr L}{\longrightarrow }N(0,1) Bn(θ)g^n(X)An(θ)LN(0,1)
g ^ n ( X ) \hat g_n(X) g^n(X)拥有正态的形式,则称 g ^ n ( X ) \hat g_n(X) g^n(X) g ( θ ) g(\theta) g(θ)的相合渐进正态估计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值