常系数微分方程组的V函数构造定理的解释

这是王高雄里的常微分方程里的二次型V函数的构造…一节的定理,

定正矩阵,这个书里没注意到在哪,不过在高等代数中就是正定矩阵的意思,

第二个划线部分矩阵里的微分运算,也是没见过的,

看起来很有意思,但是原因呢?

之前在证明刘维尔公式的时候有行列式求导运算,现在又有矩阵求导,

其实没有特别的理由,就当作是一般的函数乘积求导而已,不过对于矩阵,只需要看作是n^2维向量值函数而已,然后按照数学分析中的多元函数微分即可。

把A*'B*+BA=C展开,如何得到书上的关系式。B由于B是对称矩阵,B=U’BU也是对称的,C由于C是对称矩阵,C=U’CU也是对称的。只有A*是A的相似矩阵。

首先看书上c1j就是说是第一行第j列。即是求(AT)B(1j)元为A*T第一行乘以B的第j列,加上BA*(1j)元为B的第一行乘以A的第j列。
(λ1,0…,0)(b1j, b2j,…,bnj)’ + (b11, b12,…,b1n)(0,0,…,dj,λj,…,0)’=c1j。 所以 λ1b1j + b1(j-1)dj+b1jλj=c1j。 这里(0,0,…,dj,λj,…,0)'dj的位置在矩阵A
中为(j-1, j) λj的位置为(j,j)。

所以有(λ1+λj)b1j+dj*b(j-1)=c1j。 注意我这里跟书上的是一样的,只是写法不同,书上是为了区分之前的矩阵,而我是为了简化写法。

然后考虑c2j,
求(A*T)B(2j)元为A*T第2行乘以B的第j列

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
复数域上的微分方程的实分解定理是指,对于一类特定的复数域上的微分方程,我们可以将其转化为等价的实数域上的微分方程,并且这个转化过程是唯一的。 具体来说,假设我们有一个形如 $y'(z) = f(z,y(z))$ 的复数域上的微分方程,其中 $f(z,y)$ 是一个复解析函数。我们可以将 $y(z)$ 写成 $y(z) = u(z) + iv(z)$ 的形式,其中 $u(z)$ 和 $v(z)$ 是实函数。 然后,我们对 $u(z)$ 和 $v(z)$ 分别求导,得到: $$ \begin{aligned} u'(z) &= \frac{1}{2}[f(z,u(z)+iv(z))+\overline{f(z,u(z)+iv(z))}\,] \\ v'(z) &= \frac{1}{2i}[f(z,u(z)+iv(z))-\overline{f(z,u(z)+iv(z))}\,] \end{aligned} $$ 这样,我们就得到了一个等价的微分方程: $$ \begin{aligned} u'(z) &= \frac{1}{2}[f(z,u(z)+iv(z))+\overline{f(z,u(z)+iv(z))}\,] \\ v'(z) &= \frac{1}{2}[f(z,u(z)+iv(z))- \overline{f(z,u(z)+iv(z))}\,]i \end{aligned} $$ 需要注意的是,上述转换过程只是将原本的复数域上的微分方程转化为了等价的实数域上的微分方程,而不是将其直接解析地转化为实数域上的微分方程。因此,我们仍然需要使用实数域上的微分方程的理论和方法来研究这个等价的微分方程。 总的来说,复数域上的微分方程的实分解定理为我们研究复数域上的微分方程提供了重要的工具和方法,使得我们可以将其转化为等价的实数域上的微分方程,更方便地进行研究和解决。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值