深度强化学习是一种结合了深度学习和强化学习的方法,它使用深度学习模型来表示和学习环境的复杂性,同时使用强化学习的方法来进行决策和优化。下面是一个使用PyTorch实现的深度Q网络(DQN)的例子,这是一种常用的深度强化学习算法。 首先,我们需要定义一个神经网络模型来表示Q函数。这个模型接收一个状态作为输入,输出每个动作的Q值。
import torch
import torch.nn as nn
class DQN(nn.Module):
def __init__(self, input_dim, output_dim):
super(DQN, self).__init__()
self.fc1 = nn.Linear(input_dim, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
return self.fc3(x)
然后,我们需要定义一个代理类来实现DQN的学习算法。这个类需要实现以下几个主要的方法:
- select_action:根据当前的状态和Q函数选择一个动作。
- store_transition:存储一次转移的经验,包括当前状态、动作、奖励和下一个状态。
- learn:从存储的经验中随机抽取一批经验,