使用Spring AI 构建MCP服务

在 Spring AI 中,MCP(Model Calling Protocol)是一种用于模型调用的协议,允许你通过标准接口与不同的模型服务进行交互。Spring AI 提供了对 MCP 的支持,包括 spring-ai-starter-mcp-server-webflux 用于搭建 MCP Server,以及 spring-ai-starter-mcp-client 用于构建 MCP Client。


🧩 项目结构建议

mcp-demo/
├── mcp-server/              # MCP Server 模块
└── mcp-client/              # MCP Client 模块

✅ 一、MCP Server 端配置(基于 WebFlux)

1. 添加依赖 (pom.xml)

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-starter-mcp-server-webflux</artifactId>
    <version>1.0.0-M8</version> <!-- 使用最新版本 -->
</dependency>

2. 创建一个服务类(使用 @Tool 注解)

import org.springframework.ai.tool.annotation.Tool;
import org.springframework.stereotype.Service;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

@Service
public class McpServerService {
    @Tool(description = "测试mcp")
    public String mcpServer1() {
        return "这是测试mcp-server-1";
    }

    @Tool(description = "我爱mcp")
    public String mcpServer2() {
        return "这是测试mcp-server-2";
    }

    @Tool(description = "获取当前时间")
    public String getDate() {
        return LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"));
    }
}

3. 创建一个配置类

import org.springframework.ai.tool.ToolCallbackProvider;
import org.springframework.ai.tool.method.MethodToolCallbackProvider;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class McpServerConfig {
    @Bean
    public ToolCallbackProvider toolCallbackProvider(McpServerService mcpServerService) {
        return MethodToolCallbackProvider
                .builder()
                .toolObjects(mcpServerService)
                .build();
    }
}

4. 启动类

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class McpServerApplication {
    public static void main(String[] args) {
        SpringApplication.run(McpServerApplication.class, args);
    }
}

4. 配置文件(application.properties)

spring.application.name=mcp-server
server.port=8090

✅ 二、MCP Client 端配置

1. 添加依赖 (pom.xml)

	<dependencies>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-starter-model-ollama</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-starter-mcp-client</artifactId>
            <version>1.0.0-M8</version> <!-- 使用最新版本 -->
        </dependency>

        <!--        必须加上-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

    </dependencies>

2. 配置文件(application.properties)

spring.application.name=mcp-client
server.port=8080
spring.ai.ollama.base-url=http://localhost:11434
spring.ai.ollama.chat.model=qwen3:8b
# mcp
spring.ai.mcp.client.name=mcp-client
# mcp-server
spring.ai.mcp.client.sse.connections.server1.url=http://localhost:8090
spring.ai.mcp.client.toolcallback.enabled=true

3. 服务类

@Service
public class ChatService {
    @Autowired
    private OllamaChatModel ollamaChatModel;
    @Autowired
    private ToolCallbackProvider toolCallbackProvider;

    public Flux<String> stream(ChatDTO chatDTO) {
        if (chatDTO.model() == null) {
            throw new IllegalArgumentException("model不能为空");
        }

        ChatOptions options = OllamaOptions.builder()
                .model(chatDTO.model())
                .build();

        Prompt prompt = Prompt.builder()
                .chatOptions(options)
                .content(chatDTO.message())
                .build();

        ChatClient chatClient = ChatClient.builder(ollamaChatModel)
                .defaultToolCallbacks(toolCallbackProvider)
                .build();

        return chatClient.prompt(prompt).stream().content();

    }
}

4. 控制器

@RestController
@RequestMapping("/chat")
public class ChatController {
    @Autowired
    private ChatService chatService;

    @RequestMapping(value = "/stream")
    public Flux<String> stream(@Valid @RequestBody ChatDTO chatDTO) {
        return chatService.stream(chatDTO);
    }
}

5. 启动类

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class McpClientApplication {
    public static void main(String[] args) {
        SpringApplication.run(McpClientApplication.class, args);
    }
}

🧪 测试流程

  1. 启动 mcp-server 应用(监听端口 8090)
  2. 启动 mcp-client 应用(默认端口 8080)
  3. 访问:
    http://localhost:8080/chat/stream
    
    {
     "model": "qwen3:0.6b",
     "message": "当前时间"
    }
    

🔍 总结

组件功能
spring-ai-starter-mcp-server-webflux提供 MCP Server 实现,支持注册工具并对外暴露 HTTP 接口
@Tool 注解标记某个方法为可远程调用的工具
spring-ai-starter-mcp-client客户端用来调用远程 MCP 工具

💡 补充说明

  • 当前 Spring AI 对 MCP 的支持仍在演进中,请参考官方文档获取最新 API。
  • 可以扩展支持更多类型参数(如 JSON 对象),只需确保序列化兼容。

### Spring AIMCP 的集成概述 Spring AIMCP (Management Control Program 或其他可能含义) 可能涉及两种不同技术栈之间的协作。以下是关于如何实现两者之间潜在集成的一些分析: #### 技术背景 - **Spring AI**: 这是一个由 Spring 社区推出的框架,用于支持 Java 开发人员构建人工智能应用程序[^2]。它通过提供一系列工具和库来简化机器学习模型的训练、部署以及与其他系统的交互。 - **MCP Hosts**: 根据描述,MCP 主机可以指代运行特定程序(如 Claude Desktop、IDE 工具或其他 AI 工具)并允许这些程序访问数据的服务或平台[^1]。 #### 集成可能性 为了使 Spring AI 能够与 MCP 成功集成,通常需要考虑以下几个方面: ##### 数据交换模式 一种常见的做法是利用消息传递模式来进行通信。例如,在企业级架构设计中提到的消息队列模式可以帮助解决异构系统间的数据传输问题[^3]。具体来说,可以通过以下方式实现: - 使用 AMQP 协议或者 JMS 接口作为中间件连接 Spring AI 应用和服务端的 MCP 实体; - 设计标准化的消息格式以便于双方解析处理; ##### API 层面的支持 如果目标环境提供了 RESTful Web Service,则可以直接调用其公开接口完成所需操作。对于这种情况下的开发流程如下所示: ```java // 创建 RestTemplate 对象实例化 HTTP 请求客户端 RestTemplate restTemplate = new RestTemplate(); // 构建 URL 地址指向远程服务资源位置 String url = "http://example.com/mcp/resource"; // 发起 GET 方法请求获取响应实体对象 ResponseEntity<String> response = restTemplate.getForEntity(url, String.class); // 打印返回状态码及内容主体部分 System.out.println(response.getStatusCode()); System.out.println(response.getBody()); ``` ##### 插件扩展机制 当上述方案不适用时还可以探索插件形式加载额外功能模块的可能性。比如某些 IDE 平台就允许第三方开发者为其增添新特性从而增强整体用户体验效果。这种情况下就需要仔细阅读官方文档了解相关规范要求然后按照指引编写自定义组件提交审核上线发布供最终用户选用安装激活启用等功能选项卡界面布局调整等等细节都需要遵循既定规则执行才能确保兼容性和稳定性达到预期水平。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值