Acwing_858(Prim求最小生成树)

本文介绍了Prim算法在求解最小生成树问题时,针对稠密图和稀疏图的不同场景。作者提供了C++代码示例,并强调了在稀疏图中Kruskal算法的优越性。
摘要由CSDN通过智能技术生成

原题链接:

858. Prim算法求最小生成树 - AcWing题库

题解:

参考详解:

AcWing 858. Prim算法求最小生成树:图解+详细代码注释(带上了保存路径) - AcWing

对于稠密图而言(m=n^2)的情况,使用朴素版Prim算法更好;

而对于稀疏图而言(m=n)的情况,则使用Kruskal算法更好,相比之下,堆优化版本的Prim反而没了用武之地。

Dijkstra是更新到起始点的距离,而Prim是更新到集合S的距离

套板子即可

代码:

#include<bits/stdc++.h>
using namespace std;
const int N = 5e2 + 10;
const int INF = 0x3f3f3f3f;
int n, m;
int dis[N], g[N][N], s[N];

int prim() {
	memset(dis, 0x3f, sizeof(dis));

	int res = 0;
	for (int i = 0;i < n;i++) {//寻找离集合s距离最近的点
		int t = -1;
		for (int j = 1;j <= n;j++) {
			if (!s[j] && (t == -1 || dis[t] > dis[j]))
				t = j;
		}

		if (i && dis[t] == INF) return INF;//表示非联通图
		if (i) res += dis[t];//当集合s中结点个数不为1时
		s[t] = 1;

		for (int j = 1;j <= n;j++) dis[j] = min(dis[j], g[t][j]);//更新其余各点到s的距离

	}
	return res;
}

int main() {
	cin >> n >> m;
	for (int i = 1;i <= n;i++) {
		for (int j = 1;j <= n;j++) {
			if (i == j) g[i][j] = 0;
			else g[i][j] = INF;
		}
	}
	for (int i = 0;i < m;i++) {
		int x, y, z;cin >> x >> y >> z;
		g[x][y] = g[y][x] = min(g[x][y], z);
	}
	int t = prim();
	if (t == INF) cout << "impossible";
	else cout << t;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值