原题链接:
题解:
本题主要采用容斥原理求解:
详细过程可参见:
代码:
#include<bits/stdc++.h>
using namespace std;
using LL = long long;
const int N = 20;
int p[N], n, m;//p[N]存储的是所有质数
int main() {
cin >> n >> m;
for (int i = 0; i < m; i++) cin >> p[i];
int res = 0;
//枚举从1 到 1111...(m个1)的每一个集合状态, (因为要至少选中一个集合,所以要从00...001开始)
for (int i = 1; i < 1 << m; i++) {
int t = 1; //选中集合对应质数的乘积
int s = 0; //选中的集合数量,这个其实就等于转换为2进制的i中1的数量
//枚举当前状态的每一位
for (int j = 0; j < m; j++) {
//选中一个集合
if (i >> j & 1) {
//乘积大于n, 则n/t = 0, 跳出这轮循环(当前交集合中质数乘积超过了n,则舍弃这种集合状态)
if ((LL)t * p[j] > n) {
t = -1;
break;
}
s++; //有一个1,集合数量+1
t *= p[j];
}
}
if (t == -1) continue;
if (s & 1) res += n / t; //选中奇数个集合, 则系数应该是1, n/t为当前这种状态的集合数量
else res -= n / t; //反之则为 -1
}
cout << res << endl;
}