lasso 的理论证明-拉格朗日形式lasso的估计误差界

拉格朗日形式 lasso l 2 l_2 l2 误差界的证明

浏览本文需要预先查看lasso 的理论证明-约束lasso的估计误差界.

lasso相关证明:

接下来将对拉格朗日形式的lasso的估计误差界以及lasso误差的锥形约束进行说明。

定理2:对拉格朗日形式的lasso,假设 λ ≥ 2 ∥ X T w ∥ ∞ / N \lambda \geq 2\|X^Tw\|_{\infty}/N λ2XTw/N, 其最优解 β ^ \widehat{\beta} β 满足:
∥ β ^ − β ∗ ∥ 2 ≤ 3 γ k N N λ . \left\|\widehat{\beta}-\beta^{*}\right\|_{2} \leq \frac{3}{\gamma} \sqrt{\frac{k}{N}} \sqrt{N} \lambda. β β2γ3Nk N λ.

证明:该证明较定理1的证明复杂,但并不困难,我们首先想到的是通过构造一个类似定理1证明的基本不等式,进而证明。

  • 基本不等式的构造

如下:

v = β ^ − β ∗ v=\widehat{\beta}-\beta^{*} v=β β, 构造函数:
G ( v ) = 1 2 N ∥ y − X ( β ∗ + v ) ∥ 2 + λ ∥ β ∗ + v ∥ 1 . G(v)=\frac{1}{2N}\|y-X(\beta^{*}+v)\|^2+\lambda\|\beta^{*}+v\|_1. G(v)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值