拉格朗日形式 lasso l 2 l_2 l2 误差界的证明
浏览本文需要预先查看: lasso 的理论证明-约束lasso的估计误差界.
lasso相关证明:
接下来将对拉格朗日形式的lasso的估计误差界以及lasso误差的锥形约束进行说明。
定理2:对拉格朗日形式的lasso,假设 λ ≥ 2 ∥ X T w ∥ ∞ / N \lambda \geq 2\|X^Tw\|_{\infty}/N λ≥2∥XTw∥∞/N, 其最优解 β ^ \widehat{\beta} β
满足:
∥ β ^ − β ∗ ∥ 2 ≤ 3 γ k N N λ . \left\|\widehat{\beta}-\beta^{*}\right\|_{2} \leq \frac{3}{\gamma} \sqrt{\frac{k}{N}} \sqrt{N} \lambda. ∥∥∥β
−β∗∥∥∥2≤γ3NkNλ.
证明:该证明较定理1的证明复杂,但并不困难,我们首先想到的是通过构造一个类似定理1证明的基本不等式,进而证明。
- 基本不等式的构造
如下:
v = β ^ − β ∗ v=\widehat{\beta}-\beta^{*} v=β
−β∗, 构造函数:
G ( v ) = 1 2 N ∥ y − X ( β ∗ + v ) ∥ 2 + λ ∥ β ∗ + v ∥ 1 . G(v)=\frac{1}{2N}\|y-X(\beta^{*}+v)\|^2+\lambda\|\beta^{*}+v\|_1. G(v)=