l_q范数的理论性质

文章探讨了l_q范数在实现稀疏结构和正则化问题中的应用,包括约束形式和拉格朗日形式的l_q正则化问题。通过引理和定理,建立了预测误差与估计误差之间的关系,给出了估计误差界的界限,并讨论了受限特征值条件对理论性质的影响。这些理论结果对于理解和优化高维数据的线性回归模型具有重要意义。
摘要由CSDN通过智能技术生成

l q l_q lq 范数的理论性质

预备知识

l q l_q lq 范数介绍

实现稀疏结构的 l q l_q lq 范数形式为:
∥ β ∥ q : = ( ∑ i = 1 n ∣ β i ∣ q ) 1 / q . \|\beta\|_{q}:=\left(\sum_{i=1}^{n}\left|\beta_{i}\right|^{q}\right)^{1 / q}. βq:=(i=1nβiq)1/q.

l q l_q lq 正则化问题

同lasso一样,我们考虑以下两种类型的 l q l_q lq 正则化问题:

  • 约束形式的 l q l_q lq 正则化问题
    min ⁡ ∥ β ∥ q  s.t.  ∥ y − X β ∥ 2 ≤ ϵ . \min \|\beta\|_{q} \quad \text { s.t. } \quad\|y-X \beta\|_{2} \leq \epsilon. minβq s.t. y2ϵ.

  • 拉格朗日形式的 l q l_q lq 正则化问题
    min ⁡ 1 2 m ∥ y − X β ∥ 2 2 + λ ∥ β ∥ q q . \min \frac{1}{2 m}\|y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{q}^{q}. min2m1y22+λβqq.

REC受限特征值条件

Lasso中也有类似的条件,用于建立预测误差与估计误差之间的关系,如受限特征值条件及受限等距性质等。对设计矩阵 X X X 1 ≤ s ≤ t ≤ n 1 \leq s \leq t \leq n 1stn 以及 s + t ≤ n s+t \leq n s+tn 有:
ϕ q ( s , t , a , X ) : = min ⁡ { ∥ X δ ∥ 2 ∥ δ J ∥ 2 : ∣ J ∣ ≤ s , ∥ δ J c ∥ q q ≤ a ∥ δ J ∥ q q } . \phi_{q}(s, t, a, X):=\min \left\{\frac{\|X \delta\|_{2}}{\left\|\delta_{J}\right\|_{2}}:|J| \leq s,\left\|\delta_{J^{c}}\right\|_{q}^{q} \leq a\left\|\delta_{J}\right\|_{q}^{q}\right\}. ϕq(s,t,a,X):=min{ δJ2Xδ2:Js,δJcqqaδJqq}.
其中, J J J β \beta β 的支撑集。

一些有用的引理

为了使证明思路更清晰,我们将最终重要定理的某些部分拆成几个小的引理,用于辅助证明。

引理1:对 n n n 维向量 α \alpha α, β \beta β,以下关系成立:

∥ β ∥ q 2 ≤ ∥ β ∥ q 1 ≤ n 1 q 1 − 1 q 2 ∥ β ∥ q 2  for any  0 < q 1 ≤ q 2 < + ∞ , \|\beta\|_{q_{2}} \leq\|\beta\|_{q_{1}} \leq n^{\frac{1}{q_{1}}-\frac{1}{q_{2}}}\|\beta\|_{q_{2}} \quad \text { for any } 0<q_{1} \leq q_{2}<+\infty, βq2βq1nq11q21βq2 for any 0<q1q2<+,

∥ α ∥ q q − ∥ β ∥ q q ≤ ∥ α + β ∥ q q ≤ ∥ α ∥ q q + ∥ β ∥ q q  for any  0 < q ≤ 1. \|\alpha\|_{q}^{q}-\|\beta\|_{q}^{q} \leq\|\alpha+\beta\|_{q}^{q} \leq\|\alpha\|_{q}^{q}+\|\beta\|_{q}^{q} \quad \text { for any } 0<q \leq 1. αqqβqqα+βqqαqq+βqq for any 0<q1.

引理2:令 β ^ \hat{\beta} β^ 为拉格朗日形式正则化问题的最优解,则

1 2 m ∥ X β ∗ − X β ^ ∥ 2 2 ≤ λ ∥ β ∗ ∥ q q − λ ∥ r β ^ ∥ q q + 1 m ∥ β ^ − β ∗ ∥ 1 ∥ X ⊤ e ∥ ∞ . \frac{1}{2 m}\left\|X \beta^{*}-X \hat{\beta}\right\|_{2}^{2} \leq \lambda\left\|\beta^{*}\right\|_{q}^{q}-\lambda\left\|r\hat{\beta}\right\|_{q}^{q}+\frac{1}{m}\left\|\hat{\beta}-\beta^{*}\right\|_{1}\left\|X^{\top} e\right\|_{\infty}. 2m1 XβXβ^ 22λβqq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值