一、整体框架损失函数如下
二.损失函数具体解释
首先明确一概念,网格就是最终特征图(7*7*30)上的一个预测目标了,v1版本这样的预测结果网格一共有49个,每个维度为1*30.这30的向量含义为【x0,y0,w0, h0,I0,x1,y1,w1, h1,I1,C0,C1,C2.....C19】前面10位代表了2个box框信息以及其置信度,后20位表示了分类概率值。后面的损失函数都是针对网格中的一些属性来干活的。
2.1 标注有预测有损失
标注图像某位置有目标,预测为有==>计算response loss 响应损失以及box框的坐标等的信息对应蓝色框和红色框
coo_response_mask = torch.cuda.ByteTensor(box_target.size())
coo_response_mask.zero_()
coo_not_response_mask = torch.cuda.ByteTensor(box_target.size())
coo_not_response_mask.zero_()
for i in range(0,box_target.size()[0],2):
box1 = box_pred[i:i+2]
box1_xyxy = Variable(torch.FloatTensor(box1.size()))
box1_xyxy[:,:2] = box1[:,:2] -0.5*box1[:,2:4]
box1_xyxy[:,2:4] = box1[:,:2] +0.5*box1[:,2:4]
box2 = box_target[i].view(-1,5)
box2_xyxy = Variable(torch.FloatTensor(box2.size()))
box2_xyxy[:,:2] = box2[:,:2] -0.5*box2[:,2:4]
box2_xyxy[:,2:4] = box2[:,:2] +0.5*box2[:,2:4]
iou = self.compute_iou(box1_xyxy[:,:4],box2_xyxy[:,:4]) #[2,1]
max_iou,max_index = iou.max(0)
max_index = max_index.data.cuda()
coo_response_mask[i+max_index]=1
coo_not_response_mask[i+1-max_index]=1
box_pred_response = box_pred[coo_response_mask].view(-1,5)
box_target_response = box_target[coo_response_mask].view(-1,5)
contain_loss = F.mse_loss(box_pred_response[:,4],box_target_response[:,4],size_average=False)
loc_loss = F.mse_loss(box_pred_response[:,:2],box_target_response[:,:2],size_average=False) + F.mse_loss(torch.sqrt(box_pred_response[:,2:4]),torch.sqrt(box_target_response[:,2:4]),size_average=False)
contain_loss是计算预测为有目标的网格的confidence与真值的confidence的平方误差作为loss判定。只是两个值的计算对应红色框。(其实就是判断置信度的误差损失)
loc_loss是计算蓝色框的内容呢。
2.2 标注有预测无损失
标注图像某位置有目标,预测为无==>计算not response loss未响应损失,对应代码如下。
box_pred_not_response = box_pred[coo_not_response_mask].view(-1,5)
box_target_not_response = box_target[coo_not_response_mask].view(-1,5)
not_contain_loss = F.mse_loss(box_pred_response[:,4],box_target_response[:,4],size_average=False)
not_contain_loss是计算预测为无的网格confidence与真值的confidence的平方误差作为loss判定,也只是两个值的计算对应红色框。
可见红色框是分了两部分计算的切记切记
2.3 标注无预测有损失
标注图像某位置无目标,预测为有==>计算不包含obj损失 只计算第4,9位的有无物体概率的loss ,对应代码是下面这行。
noo_pred = pred_tensor[noo_mask].view(-1,30)
noo_target = target_tensor[noo_mask].view(-1,30)
noo_pred_mask = torch.cuda.ByteTensor(noo_pred.size())
noo_pred_mask.zero_()
# 将第4、9 即有物体的confidence置为1
noo_pred_mask[:, 4] = 1
noo_pred_mask[:, 9] = 1
noo_pred_c = noo_pred[noo_pred_mask]
noo_target_c = noo_target[noo_pred_mask]
nooobj_loss = F.mse_loss(noo_pred_c,noo_target_c,size_average=False)
noo_mask记录的是所有网格在真实图像上目标存在与否的标签。
noo_pred是根据noo_mask标签取出的实际不含目标的预测网格的向量。其向量4,,9位置的值是预测值。
noo_target是根据noo_mask标签取出的实际不含目标的真值网格的向量。其向量第4 ,9位置值是0。
nooobj_loss只计算了这个些网格30维向量的4,9位置的损失值,其他位置都没用。对应上图中的橙色框。这样此部分的loss函数目标就是让预测值越接近0越好。符合了loss的目的了
2.4 标注无预测无
标注图像某位置无目标,预测为无==>无损失(不计算)
2.5 类别计算损失
类别的损失函数计算,代码如下:
class_loss = F.mse_loss(class_pred, class_target, size_average=False)
class_loss计算的是类别的损失函数,是网格向量的后20个数据做最小平方误差来构建loss函数的。对应图中紫色框
至此v1的损失函数整体就完事了呀。
三、完整loss损失函数代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class yoloLoss(nn.Module):
'''
定义一个torch.nn中并未实现的网络层,以使得代码更加模块化
torch.nn.Modules相当于是对网络某种层的封装,包括网络结构以及网络参数,和其他有用的操作如输出参数
继承Modules类,需实现__init__()方法,以及forward()方法
'''
def __init__(self,S,B,l_coord,l_noobj):
super(yoloLoss,self).__init__()
self.S = S #7代表将图像分为7x7的网格
self.B = B #2代表一个网格预测两个框
self.l_coord = l_coord #5代表 λcoord 更重视8维的坐标预测
self.l_noobj = l_noobj #0.5代表没有object的bbox的confidence loss
def compute_iou(self, box1, box2):
'''
计算两个框的重叠率IOU
通过两组框的联合计算交集,每个框为[x1,y1,x2,y2]。
Compute the intersection over union of two set of boxes, each box is [x1,y1,x2,y2].
Args:
box1: (tensor) bounding boxes, sized [N,4].
box2: (tensor) bounding boxes, sized [M,4].
Return:
(tensor) iou, sized [N,M].
'''
N = box1.size(0)
M = box2.size(0)
lt = torch.max(
box1[:,:2].unsqueeze(1).expand(N,M,2), # [N,2] -> [N,1,2] -> [N,M,2]
box2[:,:2].unsqueeze(0).expand(N,M,2), # [M,2] -> [1,M,2] -> [N,M,2]
)
rb = torch.min(
box1[:,2:].unsqueeze(1).expand(N,M,2), # [N,2] -> [N,1,2] -> [N,M,2]
box2[:,2:].unsqueeze(0).expand(N,M,2), # [M,2] -> [1,M,2] -> [N,M,2]
)
wh = rb - lt # [N,M,2]
# wh(wh<0)= 0 # clip at 0
wh= (wh < 0).float()
inter = wh[:,:,0] * wh[:,:,1] # [N,M]
area1 = (box1[:,2]-box1[:,0]) * (box1[:,3]-box1[:,1]) # [N,]
area2 = (box2[:,2]-box2[:,0]) * (box2[:,3]-box2[:,1]) # [M,]
area1 = area1.unsqueeze(1).expand_as(inter) # [N,] -> [N,1] -> [N,M]
area2 = area2.unsqueeze(0).expand_as(inter) # [M,] -> [1,M] -> [N,M]
iou = inter / (area1 + area2 - inter)
return iou
def forward(self,pred_tensor,target_tensor):
'''
pred_tensor: (tensor) size(batchsize,S,S,Bx5+20=30) [x,y,w,h,c]
target_tensor: (tensor) size(batchsize,S,S,30)
Mr.Li个人见解:
本来有,预测无--》计算response loss响应损失
本来有,预测有--》计算not response loss 未响应损失
本来无,预测无--》无损失(不计算)
本来无,预测有--》计算不包含obj损失 只计算第4,9位的有无物体概率的loss
'''
# 1 找出标注值存在的下标coo_mask与不存在的下标noo_mask
# N为batchsize
N = pred_tensor.size()[0]
# 坐标mask 4:是物体或者背景的confidence >0 ===========================拿到有物体的记录
coo_mask = target_tensor[:,:,:,4] > 0
# 没有物体mask ==0 ===========================拿到无物体的记录
noo_mask = target_tensor[:,:,:,4] == 0
# unsqueeze(-1) 扩展最后一维,用0填充,使得形状与target_tensor一样
# coo_mask、noo_mask形状扩充到[32,7,7,30]
# coo_mask 大部分为0 记录为1代表真实有物体的网格
# noo_mask 大部分为1 记录为1代表真实无物体的网格 noo_mask的维度变为target_tensor一样的了 内容用coo_mask填充了
coo_mask = coo_mask.unsqueeze(-1).expand_as(target_tensor)
noo_mask = noo_mask.unsqueeze(-1).expand_as(target_tensor)
# coo_pred 取出预测结果中有物体的网格,并改变形状为(xxx,30) xxx代表一个batch的图片上的存在物体的网格总数
# 30代表2*5+20 例如:coo_pred[72,30]
# 2这段是根据coo_mask与noo_mask在特征图上提取预测框的对应特征值
coo_pred = pred_tensor[coo_mask].view(-1,30)
# 一个网格预测的两个box 30的前10即为2个x,y,w,h,c,并调整为(xxx,5) xxx为所有存在标注目标的网格的预测框,形如box_pred[144,5]
# contiguous将不连续的数组调整为连续的数组
box_pred = coo_pred[:,:10].contiguous().view(-1,5) #box[x1,y1,w1,h1,c1]
# #[x2,y2,w2,h2,c2]
# 每个网格预测的类别 后20
class_pred = coo_pred[:,10:]
# 3这段是根据coo_mask在标注特征图上提取对应的网格的特征值
# 对真实标签做同样操作
coo_target = target_tensor[coo_mask].view(-1,30)
box_target = coo_target[:,:10].contiguous().view(-1,5)
class_target = coo_target[:,10:]
# 4.下面就是开始具体构建loss函数了
# # # # # # # # # # # # # # # # 本来无 预测有的损失# # # # # # # # # # # # # # # # 对应橙框
# 计算不包含obj损失 即本来无,预测有
# 在预测结果中拿到真实无物体的网格,并改变形状为(xxx,30) xxx代表一个batch的图片上的不存在物体的网格总数 30代表2*5+20 例如:[1496,30]
# 根据noo_mask给出的0 1 信息来提取对应网格 一条数据代表一个网格的信息 noo_mask为 1 说明此网格真实无物体
noo_pred = pred_tensor[noo_mask].view(-1,30)
#提取出标签图像上真实无物体的网格标签内容
noo_target = target_tensor[noo_mask].view(-1,30) # 例如:[1496,30]
# ByteTensor:8-bit integer (unsigned)
noo_pred_mask = torch.cuda.ByteTensor(noo_pred.size()) # 例如:[1496,30]
noo_pred_mask.zero_() #初始化全为0
# 将第4、9 即将无obj的confidence置为1
noo_pred_mask[:, 4] = 1
noo_pred_mask[:, 9] = 1
# 拿到第4列和第9列里面的值(即拿到真实无物体的网格中,网络预测这些网格有物体的概率值) 一行有两个值(第4和第9位)
# 例如noo_pred_c:2992 noo_target_c:2992 如果有obj存在就不会取这个值
noo_pred_c = noo_pred[noo_pred_mask]
# 拿到第4列和第9列里面的值 真值为0,表示真实无obj(即拿到真实无物体的网格中,这些网格有物体的概率值,为0)
noo_target_c = noo_target[noo_pred_mask]
# 均方误差 如果 size_average = True,返回 loss.mean()。 例如noo_pred_c:2992 noo_target_c:2992
# nooobj_loss 一个标量 那么这个损失函数目标就是让noo_pred_c无限接近于真值0 这个loss就能无限接近最小值0 损失函数目的达到
# 想让存在的可能性越小越好
nooobj_loss = F.mse_loss(noo_pred_c,noo_target_c,size_average=False)
# # # # # # # # # # # # # # # # 本来有 预测有的损失# # # # # # # # # # # # # # # #
#计算包含obj损失 即本来有,预测有 和 本来有,预测无
coo_response_mask = torch.cuda.ByteTensor(box_target.size())
coo_response_mask.zero_()
coo_not_response_mask = torch.cuda.ByteTensor(box_target.size())
coo_not_response_mask.zero_()
# 选择最好的IOU 2个box选1个吧
for i in range(0,box_target.size()[0],2):
# 预测框 2个
box1 = box_pred[i:i+2]
box1_xyxy = Variable(torch.FloatTensor(box1.size()))
box1_xyxy[:,:2] = box1[:,:2] -0.5*box1[:,2:4]# 左上角
box1_xyxy[:,2:4] = box1[:,:2] +0.5*box1[:,2:4]# 右下角
# 标注框 1个
box2 = box_target[i].view(-1,5)
box2_xyxy = Variable(torch.FloatTensor(box2.size()))
box2_xyxy[:,:2] = box2[:,:2] -0.5*box2[:,2:4]
box2_xyxy[:,2:4] = box2[:,:2] +0.5*box2[:,2:4]
iou = self.compute_iou(box1_xyxy[:,:4],box2_xyxy[:,:4]) #[2,1]
max_iou,max_index = iou.max(0)
max_index = max_index.data.cuda()
coo_response_mask[i+max_index]=1 # 最大iou对应的mask 值为1 否则为0
coo_not_response_mask[i+1-max_index]=1# 非最大iou对应的mask 值为1 否则为0
# 1.response loss响应损失,即本来有,预测有 有相应 坐标预测的loss (x,y,w开方,h开方)参考论文loss公式
# box_pred [144,5] coo_response_mask[144,5] box_pred_response:[72,5]
# 选择IOU最好的box来进行调整 负责检测出某物体
box_pred_response = box_pred[coo_response_mask].view(-1,5)# 最佳box坐标提出来其对应的预测值
box_target_response = box_target[coo_response_mask].view(-1,5)# 最佳box坐标剔除来其对应的真值
# box_pred_response:[72,5] 计算预测 有物体的概率误差,返回一个数
# 存在可信度计算 box_target_response[:,4]的值为1 想让box_pred_response[:,4]存在的可能性越大越好
contain_loss = F.mse_loss(box_pred_response[:,4],box_target_response[:,4],size_average=False)
# 计算(x,y,w开方,h开方)参考论文loss公式
# 坐标可信度计算
loc_loss = F.mse_loss(box_pred_response[:,:2],box_target_response[:,:2],size_average=False) + F.mse_loss(torch.sqrt(box_pred_response[:,2:4]),torch.sqrt(box_target_response[:,2:4]),size_average=False)
# # # # # # # # # # # # # # # # 本来有 预测无的损失# # # # # # # # # # # # # # # #
# 2.not response loss 未响应损失,即本来有,预测无 未响应
box_pred_not_response = box_pred[coo_not_response_mask].view(-1,5)
box_target_not_response = box_target[coo_not_response_mask].view(-1,5)
box_target_not_response[:,4]= 0
#存在可信度计算 loss的目的是让box_pred_not_response越小越好。就是想让不存在的可能性越小越好
not_contain_loss = F.mse_loss(box_pred_response[:,4],box_target_response[:,4],size_average=False)
# # # # # # # # # # # # # # # # 有物体的分类损失# # # # # # # # # # # # # # # #
# 3.class loss 计算传入的真实有物体的网格 分类的类别损失
class_loss = F.mse_loss(class_pred,class_target,size_average=False)
# # # # # # # # # # # # # # # # 最终的总损失# # # # # # # # # # # # # # # #
# 除以N 即平均一张图的总损失
return (self.l_coord*loc_loss + contain_loss + not_contain_loss + self.l_noobj*nooobj_loss + class_loss)/N