1.映射的概念
什么叫映射,在书中我们定义为两个非空集合X,Y,存在一个法则使得对X中的每个元素x都能按照法则在Y中找到唯一对应值,这就叫映射。
然而书中讲的比较晦涩难懂,下面我将通过图来加深大家对概念的理解:
如上图:根据这个定义,我们可以从中得知,x与y的关系,是多对一的关系,也就是说允许大于等于一个x对应同一个y,但是每个x只能指向一个y,这听起来有点拗口,但是请记住“x与y的关系是多对一的”,这里的多是指大于等于一。
在这里,我们称x为元素y的一个原像,而y称为元素x的像。
而根据定义我们可以知道,在映射关系中,X中的每个元素x都能在Y中找到唯一对应的元素y,根据这个我们可以得出:
X中的所有元素都必须能在Y中找到对应的像,而Y中的元素则不一定能在X中找到原像。也就是书上所说的对于对应法则f,f(x)的值域与Y是被包含关系。
如果当Y中的元素都能在X中找到原像,那我们就称这个映射为:满射。
当在映射中X与Y的关系,也就是像与原像的关系是一一对应时,我们就称之为:单射
当这个映射满足单射和,满射两个关系时,我们就称之为:双射
2.逆映射与复合映射
逆映射在书中是这样说到:只有在单射才存在逆映射。但是从映射的定义看来:两个非空集合X,Y,存在一个法则使得对X中的每个元素x都能按照法则在Y中找到唯一对应值。 注意,书中说的是X中的每个元素x都能在Y中找到像。
所以满足单射是逆映射的一个充分条件,而非充要条件,既是逆映射,则就是X与Y能颠倒运算,也就是X和Y既能做原像,也能做像,所以一个逆运算必须满足满射和单射的条件,也就是双射。
也就是说双射是逆运算的充要条件。
对于复合映射如下图所示:
如上两图所示,对于复合映射,我们可以理解为一个复合运算,其实和复合运算类似。就是对于两个“g:X—Y1,f:Y2—Z”映射而言,X—Y1映射的像也就是Y1能找到一个对应法则并使Y1中有原像的元素y在Y2中找到像,我们就称“g和f构成复合映射”
由定义可知g的值域必须包含在Y2的定义域内,否则不能构成复合映射。
其次,映射是有顺序的g与f的复合映射有意义不代表f与g的复合映射有意义,即使他们都有意义,但其意义未必相同。
具体详情,可以自己画图理解。